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Challenges without VT-x

• Techniques such as paravirtualization and
dynamic binary translation faced some hard technical challenges in 
virtualizing the existing x86 architecture
• Ring aliasing and compression

• Address space compression

• Non-faulting access to privileged state

• Unnecessary impact of guest transitions
• Suspend interrupts within critical regions

• Interrupt virtualization

• Access to hidden state



VT-x Architecture:
Root and non-root mode
• The processor is at any time either in root mode or in non-root mode

• Duplicates the entire architecturally visible state of the processor

• Atomic transition
• One instruction to do transition

• Only use for virtualization, orthogonal to all other modes on CPU



VT-x Architecture:
Root and non-root mode
• Follows Popek/Goldberg criteria

• With root-mode privileged instructions

• Orthogonal to protection levels of protected mode with all 4 levels 
separately available to each mode
• Solves: Ring aliasing and compression

• Each mode defines its own distinct complete 64-bit linear address 
space, with distinct page table tree and CR3
• Solves: Address space compression

• Each mode has its own interrupt flag
• Solves: Interrupt virtualization



Root mode

• Hypervisor and host operating system

• Can only be detected by executing specific new instruction only 
available in root mode
• Guest can not know if it is virtualized



Non-root mode

• Virtual machines

• All root-mode-privileged instructions are either:
• Implemented by the processor and operate exclusively on the non-root 

duplicate of the processor

• Or cause a trap

• Executing instruction in hardware has better performance
• Tradeoff between hardware complexity and overall performance

• Grant full access to 4 level rings to guest OS
• Solves: Ring aliasing and compression



VT-x and Popek/Goldberg Theorem

• Does not take into account whether instructions are privileged or not, 
instead only takes into consideration the orthogonal question of 
whether they are root-mode privileged

• However, reducing transitions by implementing certain sensitive 
instructions in hardware is necessary to meet the performance 
criteria.



Book examples - 1

• Guest OS running on non-root-%cpl=0
• Its privileged instructions operate on the non-root duplicate of the processor 

state.

• Possible ways
• Execute instructions in hardware without informing the hypervisor

• Generate a trap for hypervisor to emulate the instruction



Book examples - 2

• Sensitive instructions available in usermode
• cli, sti, popf, pushf

• Are oftenly used in modern OS; thus, handled directly by the processor

• Behavior-sensitive instructions available in usermode
• sgdt, sidt

• Not very common; therefore are Root-mode-priviledged, and cause trap 
when executed



VT-x Control Flow

• Virtual Machine Control Structure (VMCS)
• In physical memory

• Layout is undefined

• Access with #vmread, #vmwrite

• #vmlaunch, #vmresume
• Enter non-root mode

• #vmexit
• Non-root to root

• Comes with a trap

• vmcs.exit_reason



VMCS: Exit Reasons - 1

• Stored in register: vmcs.exit_reason

• Any attempt by guest to execute a root-mode-priviledged instruction
• Most of the priviledged instructions

• Sensitive-yet-unpriviledged instructions

• #vmcall made by guest operating system

• Exceptions result from executing innocuous instruction in non-root 
mode, that happens to take a trap
• Page faults caused by shadow paging and access to memory-mapped I/O

• General-purpose faults due to segment violations



VMCS: Exit Reasons - 2

• EPT violations
• Subset of page faults caused when the extended page mapping (Chapter 5)

• External interrupts that occurred while the CPU is executing in non-
root mode
• Network or disk I/O
• Must be handled by hypervisor or host OS

• Interrupt window opens and the virtual machine is pending interrupt
• Following #vmexit, the hypervisor can emulate the interrupt for vm

• ISA extensions introduced with VT-x
• Doesn’t occur in “normal virtualization”, but important in nested 

virtualization



VMCS: All Exit Reasons



Virtualizing the CPU and ignore the MMU

• Root-mode and non-root made each has a distinct CR3 register.
• Switched as part of vmentry and #vmexit

• 100% disjoint address spaces

• Other aspect of memory virtualization is left to software

• Two possible approaches
• Shadow the page tables of the virtual machine with host-physical values

• Rely on paravirtualization of the virtual memory subsystem and inform the 
hypervisor to validate all new mappings



Virtualizing the CPU and ignore the MMU

• VMWare: Shadow paging

• Bad performance
• Over 90% of #vmexit were due to shadow paging

• Disabling VT-x and use software techniques is even faster

• All guest’s page table pages are downgraded to read-only mappings 
to ensure a trap, or #vmexit in VT-x

• A hypervisor that relies entirely on direct execution will therefore 
suffer a trap for every change in the virtual memory of guest OS



Virtualizing the CPU and ignore the MMU

• VMWare: Adaptive dynamic binary translation
• Relies on locality of instructions that manipulate page table entries in an OS

• Identifies the locations of those instructions and emulate them.

• Update shadow entries without dereferencing the memory location

• Avoid taking expensive traps

• This anomaly was addressed in subsequent processors

•With architectural support to MMU virtualization (Chapter 5)



Case study: KVM

KVM module
1.kernel module in linux, act as a hypervisor

Each guest os is a process, each vcpu is a thread. 

Guest OSs is managed by linux existing module

2.virtualize the cpu

initialize the vcpu by  setting register

(e.g. cr4 for virtual mode)

switch cpu mode

QEMU-KVM
virtualize I/O(hard disk/network access)



CPU Mode

Three mode

non root mode(guest mode): execute normal(neither privileged nor sensitive) instructions

User mode: for i/o emulation, executed by qemu

Kernel mode: execute sensitive or privileged instruction(e.g.SGDT,SIDT).  

`



Mode Transition

VMexit is triggered by sensitive/privileged instruction

then cpu switch mode from non-root to kernel mode,

If it is I/O instruction, cpu switch from kernel mode 

to user mode. Then transfer the control to qemu.

Then qemu will emulate the I/O instruction.



Within the KVM kernel module

• Restores the current state of the virtual CPU

• Enters non-root mode using #vmresume

• Virtual machine executes until next #vmexit

• Handles the #vmexit according to exit reason

• If the guest issued a programmed I/O operation(exit_reason = IO) or a 
memory-mapped I/O instruction(exit_reason = exception, only when 
accessing a memory-mapped I/O page), return to user mode

• If the #vmexit is cause by an external event, return to userspace



Control Flow of Handling VMexit 

Fetch the instruction from guest virtual memory
Decode the instruction, extracting its operator and operands
Verify whether the instruction can execute 
given the current state of the virtual CPU
Read any memory read-operands from memory
Emulate the decoded instruction
Write any memory write-operands back to the guest virtual memory
Update guest registers and the instruction pointer as needed



Questions


