
IO Virtualization
Kedar & Ozzie

Overview
● Benefits
● Challenges
● Full Virtualization
● Paravirtualization
● Front-ends, Back-ends
● Pass through mode

Virtualization : Review
● Create a Virtual machine that can emulate all hardware resources
● Present an abstract or emulation of resource to outside world
● Encapsulate the physical resource
● Map logical resource with a physical resource (one-one, many-one,

one-many)
● Advantages - Efficient utilization of resources, scalability, security

IO Virtualization

Source: Paper by Carl Waldspurger

Examples of IO Virtualization
● Computer Storage

○ Logical disk in PCs backed by partition or storage on network
● Computer Networking

○ Virtual private N/W - isolation created using cryptographic methods underlying is
the public internet

IO Virtualization
- Encapsulates physical IO
- Decouples Virtual IO from Physical IO (enables portability)
- Introduce a level of indirection between abstract and concrete

Two techniques to handle IO Virtualization - software or hardware support

We will cover the software support for IO Virtualization.

Benefits
➔ Enables hypervisor to encapsulate entire state of VM
➔ Hypervisor can encode state of IO

◆ Suspend VM (source server)
◆ Store the encoded representation (copy to target server)
◆ Resume execution at a later point

➔ Provide one-one, many-one, one-many mappings
➔ Allow hypervisor to add new features not supported by physical IO

◆ Replicate data on storage devices
➔ Optimization to the memory images of VMs

Challenges
● Ensure good IO performance despite layer of indirection and interposition

○ IO opertions need to traverse 2 IO stacks (guest , hypervisor)
● Preserving semantics for virtual devices and interfaces
● Ensuring IO performance despite overhead due to additional functionalities

added by hypervisor like security checks on n/w packets , encrypting disk
writes.

● Prevent VM from monopolizing the resource and avoid scheduling delays
● Scheduling could impact VM performance

○ Contention for CPU resources could decrease TCP network performance.
○ TCP connections define RTT for flow control. CPU time-multiplexing distorts RTT, congestion

windows grow slowly, degrades throughput.

Emulation [Full Virtualization]
● Guest OS believes exclusive control on IO devices.
● Hypervisor cannot allow that. (Guest OS on newly starting VM might

initialize the IO devices if allowed direct access)
● Hypervisor traps the IO related operations and emulates them

Types of Interaction between OS/Device

● OS discovers and talks to devices through MMIO & PIO operations
○ Bios associates addresses with registers of IO devices. If addresses from memory address

space - MMIO, if separate address space - PIO

● Devices respond by triggering interrupts, reading/writing from/to DMA

Interactions with IO devices

Source: H/W & S/W support for
Virtualization

Emulation [Full Virtualization]
Hypervisor Virtualizes by :

● Trapping every MMIO , PIO operations of guest OS
○ MMIO - regular load /store instructions from/to guest memory pages.
○ Hypervisor traps by mapping pages as reserved/not-present (for both load/store) or as

read-only for store
○ Guest PIO are privileged instructions, hypervisor configures guest’s VMCS to trap them

● Emulating - interrupts, read/write to DMA

Linux Implementation

Source: H/W & S/W support for Virtualization

Linux Implementation
● Each VM encapsulated in Qemu process.
● Each virtual core(VCPU) represented by a thread

○ Each VCPU thread has 2 execution contexts - guest VM and host QEMU
○ Host context - for handling exits of guest VCPU context.

● Qemu creates “IO thread” for each virtual device.
○ IO thread handles asynchronous activity like handling network packets

● Here , there are 2 VCPUs and one virtual device
● Guest VM device driver issues MMIO/PIO instructions to drive the device - directed at read/write protected

memory locations - suspend VCPU context - invoke KVM
● KVM relays events to same thread but to the host execution context
● Events are handled by the device emulation layer of host context through regular system calls
● Device emulation layer emulates DMA by read/write from guest IO buffers - accessible through shared

memory
● Resumes guest execution context via KVM injecting interrupts to signal the guest about IO operation

I/O Paravirtualization
● Drivers and hardware were not designed for virtualization

○ Every operation can result in numerous traps
○ Layout of registers in memory tightly packed

● Redesign virtual device and its interactions
○ Minimize overhead associated with emulate
○ Guest uses specialized driver for optimized virtual hardware

● Performance comes at cost of abstraction
○ Installation of paravirtual drivers required
○ Drivers must be implemented for each type of OS

● Can be supported with emulation
○ Usually for legacy reasons

I/O Paravirtualization

Source: Virtio: An I/O virtualization framework for Linux

I/O Paravirtualization: Implementation
● Minimize the number of exits

○ Virtio uses virtqueues to perform explicit exits
○ Two modes so Guest and Host don’t step on each other

● Utilize a shared memory segment
○ Write commands for emulation layer to access

● Reduce number of context switches
○ Vhost-net handles packet processing in Linux kernel
○ Operates with virtio-net enhancement

● Usually results in major performance enhancements
○ Virtio-net much better than e1000 (throughput, exits/secs, interrupts/secs)

Front-Ends and Back-Ends
● Front-End: Device interface

○ Guest driver and emulated device

● Back-End: Device implementation
○ Host physical resources

● Decouples ends allow for “plug-and-play”
○ Disk storage backed by file
○ Use new HW for Guest assuming older HW

● Additional functionality easily interposable
○ Packet sniffing, disk encryption, snapshot logging

● Active research to reduce overhead and interpose functionality

Front-Ends and Back-Ends

Source: I/O Virtualization

Pass-Through Mode
● Guest is able to access the device directly
● Virtually eliminates all emulation and back-end overhead
● Each device is limited to use by one VM
● Introduces strong coupling between Guest and hardware

○ Inability to interpose processes
○ Option of live migration no longer viable

● Issue of “correct” and “safe” DMA access not solved
● Active area of research to make viable

○ Hardware support making progress here

I/O Virtualization
● Emulation (Full Virtualization)

○ Best option for correctness and abstraction
○ High performance cost

● Paravirtualization
○ Optimize driver and virtual device interaction
○ Guest is “aware” of virtualization

● Pass-Through Mode
○ Best option for performance
○ Strong coupling with hardware

