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Full virtualization

• Unmodified OS

• It doesn’t know about hypervisor

• Back and forth between hypervisor and MMU-visible shadow page table: 
inefficient

• Unprivileged instructions which are sensitive: difficult to handle (binary 
translation VMware ESX)

• Cannot access hardware in privileged mode

• If guest OS wants real resource information? (Timer, superpages)
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Paravirtualization

• Modify Guest OS

• It knows about hypervisor

• Applications not modified

• Some exposure to hardware and real resources like time

• Improved performance (reduce redirections, allowing guest OS to use real 
hardware resources in a secure manner)

• It can allow us to do virtualization without hardware support
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Discussion – Xen

• Memory Management

• CPU

• Protection

• Exception

• System call

• Interrupt

• Time

• Device I/O
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Protection

• Privilege of OS must be less than Xen:

• In x86, 4 levels of  privilege

• 3 for applications, Zero for OS - generally

• Downgrade guest OS to level 1 or 2

• Xen will be at 0
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Exceptions

• System calls, Page Faults

• Register with Xen: descriptor table for exception handlers 

• No back and forth between Xen and Guest OS like in full Virtualization

• Fast handlers for system call:

• When Applications execute system call, it directly goes to Guest OS handler in 
ring 1 – not to Xen (But not page fault handler it has to go through Xen)

• Handlers validated before installing in hardware exception table
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Time

• Guest OS can see: both real and virtual time

• Real time

• Virtual time

• Wall clock time

• Why do you want to see time? e.g., need it for TCP: TCP timeouts, RTT 
estimates
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Memory Management

• TLB flush on context switch (Guest OS – Guest OS) – Undesirable

• Software TLB – can virtualize without flushing between switches

• Hardware TLB – tag it with address space identifier. 

• Want to Avoid flushing between switches (Guest OS - Xen)

• What about x86? 

• Not software TLB. Hardware, but no tags

• What can we do?
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Memory Management

x86 architecture perspective

• Guest OS allocate and manage own hardware page tables

• Minimal involvement of Xen

• More safety and isolation

• Avoid flush on switch (Guest OS - Xen) : Xen in top 64MB of VM address space.

• Guest OS shouldn’t access top 64MB.

• Xen never paged out
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Paging

• Guest OS has its own memory reservation. 

• When it needs new page table, allocate from what it has

• Registers with Xen

• Xen gives up write-privileges

• Guest OS can read directly

• Guest OS must validate with Xen for writes / updates

• No back and forth like in Full virtualization. 

• No shadow table here. Life is easier.
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Hypercalls and Events: Control Transfer

• So guest OS validates with Xen for every update. 

• Minimize these calls: Batch these updates together. “Hypercalls” to Xen

• Hypercalls: think of them as synchronous calls TO Xen

• In xen/include/public/xen.h: ~40 hypercalls. E.g. set trap table, mmu update, etc.

• Another term: Events

• Events: async notifications FROM Xen. Like device interrupts
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• Guest OS: Xen hosts this OS

• Domain: VM, inside which Guest OS 
executes

• Guest OS- program, Domain-
process

• Domain0 : separate Guest OS. 
Privileged. Control management

• Domain0- more access to hardware 
& hypervisor

• Like a “supervisor” who manages 
others

• It creates new domains. Work 
delegated to it.

• Reduces hypervisor complexity

• Memory reservation for new 
domains done statically. Non 
contiguous phys mem.
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I/O

• Event notifications instead of Interrupts

• Simple abstraction: 

• Asynchronous I/O rings

• Data transfer to guest from Xen and vice versa

• Using these shared memory buffers
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I/O rings

• Ring is circular queue of 
descriptors

• Descriptors allocated by domains

• Descriptors don’t directly 
contain I/O data

• Two pairs of producer/consumer 
pointers

• Domains place request

• Domain Advances request 
producer pointer

• Xen removes and handles them

• Xen advances request consumer 
pointer

• Zero copy transfer
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Disk

• Domain0, the privileged one, can access disk directly

• Other domains can not. They use Virtual Block Drivers. VBD

• VBD: contains ownership and access control information

• Translation table: Map VBD request -> physical device, sector address

• VBD, for others, is created and configured at Domain0

• Other domains access via I/O rings

• Reorder, Batch disk requests
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Network

• Each domain has: 
• 1 Send I/O ring, 

• 1 receive I/O ring

• Send packet: domains place in I/O ring.

• Receive packet: Xen does pattern matching to find destination domain

• Go through Virtual Firewall. Match patterns.

• Domain0 created the rules. Pattern -> Action

16



Questions ?
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