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Agenda
• Introduction
• SystemVerilog Design Features
• SystemVerilog Assertions
• SystemVerilog Verification Features
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SystemVerilog Charter
• Charter: Extend Verilog IEEE 2001 to higher 

abstraction levels for Architectural and 
Algorithmic Design , and Advanced 
Verification.
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SystemVerilog: Verilog 1995
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SystemVerilog: VHDL
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Semantic Concepts: C
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SystemVerilog: Verilog-2001
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SystemVerilog: Enhancements
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SystemVerilog: Unified Language
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Agenda
• Introduction
• SystemVerilog Design Features
• SystemVerilog Assertions
• SystemVerilog Verification Features
• Using SystemVerilog and VHDL Together
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Basic SystemVerilog Data Types

reg r;     // 4-state Verilog-2001 single-bit datatype
integer i; // 4-state Verilog-2001 >= 32-bit datatype
bit b;     // single bit 0 or 1
logic w;   // 4-valued logic, x 0 1 or z as in Verilog
byte b8;   // 8 bit signed integer
int i;     // 2-state, 32-bit signed integer

Explicit 2-state Variables Allow Compiler
Optimizations to Improve Performance

The unresolved type “logic” in SystemVerilog
is equivalent to “std_ulogic” in VHDL
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Familiar C Features In SystemVerilog

do
begin
if ( (n%3) == 0 ) continue; 
if (foo == 22) break;

end
while (foo != 0);
…

continue starts 
next loop iteration

break exits
the loop 

(= “exit” in VHDL

works with:
for
while
forever
repeat
do while

if ((a=b)) …
while ((a = b || c))

Blocking Assignments 
as expressions

Extra parentheses 
required to distinguish 

from if(a==b)

x++;
if (--c > 17) c=0;

Auto increment/
decrement operators
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SystemVerilog Struct = Record
typedef struct {
logic PARITY;
logic[3:0] ADDR;
logic[3:0] DEST;

} pkt_t;

type PKT_T is record
PARITY: std_ulogic;
ADDR: std_ulogic_vector(3 downto 0);
DEST: std_ulogic_vector(3 downto 0);

end record;

signal MYPKT : PKT_T;
...
MYPKT.ADDR <= “1100”;

pkt_t mypkt;
...
mypkt.ADDR = 12;

The mypkt 
structure/
record is 

“unpacked”

PARITY
ADDR
DEST

0331

In SystemVerilog, struct variables can
also be declared directly, without the typedef

struct {
bit [7:0]  opcode;
bit [23:0] addr;
} IR;

no typedef

Structure definitions are just like in C but 
without the optional structure tag before the ‘{‘
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Packed Structures and Unions
typedef struct packed {
logic [15:0] source_port;
logic [15:0] dest_port;
logic [31:0] sequence;

} tcp_t;
typedef struct packed {
logic [15:0] source_port;
logic [15:0] dest_port;
logic [15:0] length;
logic [15:0] checksum

} udp_t;

typedef union packed {
tcp_t tcp_h;
udp_t udp_h;
bit [63:0] bits;
bit [7:0][7:0] bytes;

} ip_t;

ip_t ip_h;
logic parity;

ip_h.udp_h.length = 5;
ip_h.bits[31:16] = 5;
ip_h.bytes[3:2] = 5;

parity = ^ip_h;

All 
members 
of a union 

must 
be the 

same size

source_port checksumlengthdest_port

source_port sequencedest_porttcp_t

udp_t

Create multiple layouts for accessing data
VHDL records not explicitly packed

Equivalent

Operate on entire 
structure as a whole
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Type Conversion
typedef struct {
logic PARITY;
logic[3:0] ADDR;
logic[3:0] DEST;

} pkt_t;

typedef bit[8:0] vec_t;

pkt_t mypkt;
vec_t myvec;

myvec = vec_t’(mypkt);
mypkt = pkt_t’(myvec);

User-defined types and explicit casting
improve readability and modularity

Unpacked Structure

User-defined type:
packed bit vector

Cast mypkt as type vec_t

Similar to Qualified Expressions
or conversion functions in VHDL

Cast myvec as type pkt_t
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Data Organization - Enum
type FSM_ST is

{IDLE,
INIT,
DECODE,
…};

signal pstate, nstate : FSM_ST;

case (pstate) is

when idle: 
if (sync = ‘1’) then

nstate <= init;
end if;

when init: 
if (rdy = ‘1’) then

nstate = decode;
end if;

…
end case;

VHDL enums not explicitly typed

typedef enum
{idle,
init,
decode,
…} fsmstate;

fsmstate pstate, nstate;

case (pstate)

idle: if (sync)
nstate = init;

init: if (rdy)
nstate = decode;

…
endcase

typedef enum logic [2:0]
{idle,
init,
decode,
…} fsmstate;

typedef enum logic [2:0]
{idle = 0,
init = 3,
decode, // = 4
…} fsmstate;

VHDL: SystemVerilog:
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Packed and Unpacked Arrays
bit a [3:0];unpacked 

array of 
bits

Don’t get them mixed upDon’t get them mixed up

a0

a1

a2

a3
unused

bit [3:0] p;
packed 
array of 

bits
p0p1p2p3

bit [15:0] memory [1023:0];
memory[i] = ~memory[i];
memory[i][15:8] = 0;

bit [15:0][1023:0] Frame;
always @inv Frame = ~Frame;

1k 16 bit 
unpacked
memory Packed 

indexes can be 
sliced1k 16 bit 

packed
memory

Can operate on 
entire memory

SystemVerilog also includes the VHDL-like array attribute functions:
$left, $right, $low, $high, $increment, $length and $dimensions
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Pre-Post Synthesis Mismatches

• Causes
• Sensitivity list mismatches
• Pragmas affect synthesis but not simulation

• SystemVerilog Solves these problems
• Specialized always blocks automate sensitivity
• Synthesis directives built into the language

RTL
Gates

Synthesis

=/
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Design Intent – always_{comb,latch,ff}
• always blocks do not 

guarantee capture of intent
• If not edge-sensitive then 

only a warning if latch 
inferred

• always_comb, always_latch 
and always_ff are explicit

• Compiler Now Knows User 
Intent and can flag errors 
accordingly

//OOPS forgot Else but it’s 
//only a synthesis warning

always @(a or b)
if (b) c = a;

//Compiler now asks 
//“Where’s the else?”
always_comb

if (b) c = a;
//Intent: Conditional
//        Assignment
always_latch

if (clk)
if (en) Q <= d;

//Conversely unconditionally 
//assigned –is it a latch?

always_latch
q <=d
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always_comb Sensitivity
• always_comb eliminates sensitivity list issues

• Ensures synthesis-compatible sensitivity
• Helps reduce “spaghetti code” 

• Consider that always_comb derives sensitivity from
• RHS/expr in process
• RHS/expr of statements in Function Calls

logic avar,a,b,c,d,e;
logic [1:0] sel;

always_comb begin

a = b;
StepA();

end
function StepA

case (sel)
2’b01: avar = a | c;
2’b10: avar = d & e;
default: avar = c;

endcase
endfunction

always @(sel,b,c,d,e) begin
a = b;
case (sel)
…

endcase
end

Encapsulate blocks of 
combinational logic into functions –

Easier to read and debug
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Design Intent – Unique/Priority
• Parallel_case/full_case pragmas affect synthesis behavior 

but not simulation behavior
• Unique keyword means that one and only one branch will be taken 

(same as full_case parallel_case)
• Priority keyword means that the first branch will be taken (same 

as full_case)
• Will cause simulation run-time error if illegal value is seen

unique case (sel)
sel[0] : muxo = a;
sel[1] : muxo = b;
sel[2] : muxo = c;

endcase

unique if (sel==3’b001)
muxo = a;

else if (sel == 3’b010)
muxo = b;

else if (sel == 3’b100)
muxo = c;

priority case (1’b1)
irq0: irq = 4’b1 << 0;
irq1: irq = 4’b1 << 1;
irq2: irq = 4’b1 << 2;
irq3: irq = 4’b1 << 3;

endcase

priority if (irq0)
irq = 4’b1;

else if (irq1)
irq = 4’b2;

else if (irq2)
irq = 4’b4;

No default
clause needed

No ending 
else needed

sel must be 
“one-hot”

irq0 has 
highest 
priority
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Syntax – Implicit Named Port 
Connections• Creating netlists by hand is 

tedious
• Generated netlists are 

unreadable
• Many signals in 

instantiations
• Instantiations cumbersome 

to manage
• Implicit port connections 

dramatically improve 
readability

• Use same signal names up 
and down hierarchy where 
possible

• Port Renaming Accentuated
• .name allows explicit 

connections with less typing 
(and less chance for error)

module top();
logic rd,wr;
tri [31:0] dbus,abus;
tb(.*);
dut(.*);

endmodule

module top();
logic rd,wr;
tri [31:0] dbus,abus;
tb tb(.*, .ireset(start),

.oreset(tbreset));
dut d1(.*,.reset(tbreset[0]));
dut d2(.rd, .wr, .dbus, .abus,

.reset(tbreset[1]));
endmodule
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SystemVerilog Interfaces
Design On A White Board HDL Design

Complex signals
Bus protocol repeated in blocks
Hard to add signal through hierarchy

Communication encapsulated in interface
- Reduces errors, easier to modify
- Significant code reduction saves time
- Enables efficient transaction modeling
- Allows automated block verification

Bus Bus

Bus

SystemVerilog
Design Interface Bus

Signal 1
Signal 2
Read()
Write()
Assert
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Top

CPU Mem

Example without Interface
entity memMod is
port(reg,clk,start : in bit;
mode : in std_logic_vector(1 downto 0);
addr : in std_logic_vector(7 downto 0);
data : inout std_logic_vector(7 downto 0);
gnt, rdy : out bit);

end memMod;

architecture RTL of memMod is
process (clk) begin
wait until clk’event and clk=‘1’;
gnt <= req AND avail;

end architecture RTL;

entity cpuMod is
port(clk, gnt, rdy : in bit;
data : inout std_logic_vector(7 downto 0);
req, start : out bit;
mode : out std_logic_vector(1 downto 0);
addr : out std_logic_vector(7 downto 0));

end cpuMod;

architecture RTL of cpuMod is
...
end architecture RTL;

architecture netlist of top is
signal req,gnt,start,rdy : bit;
signal clk : bit := ‘0’;
signal mode : 
std_logic_vector(1 downto 0);

signal addr, data :
std_logic_vector(7 downto 0);

mem: memMod port map
(req,clk,start,mode,
addr,data,gnt,rdy);

cpu: cpuMod port map
(clk,gnt,rdy,data,
req,start,mode,addr);

end architecture netlist;

clk

req
start
gnt
rdy
mode[1:0]

addr[7:0]

data[7:0]
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Example Using Interfaces
interface simple_bus; 
logic req,gnt;
logic [7:0] addr,data;
logic [1:0] mode; 
logic start,rdy;

endinterface: simple_bus

module memMod(interface a, 
input bit clk);

logic avail;
always @(posedge clk)

a.gnt <= a.req & avail;
endmodule

module cpuMod(interface b,
input bit clk);

endmodule

module top;
bit clk = 0;
simple_bus sb_intf; 

memMod mem(sb_intf, clk); 

cpuMod cpu(.b(sb_intf),
.clk(clk));

endmodule

Top

CPU Mem
sb_intf

clk

Bundle 
signals in 
interface

Use interface
keyword in port list

Refer to intf 
signals

interface instance

Connect 
interface
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typedef logic [31:0] 
data_type;

bit clk;
always #100 clk = !clk;

parallel channel(clk);
send    s(clk, channel);
receive r(clk, channel);

typedef logic [31:0] 
data_type;

bit clk;
always #100 clk = !clk;

serial channel(clk);
send    s(clk, channel);
receive r(clk, channel);

module send(input bit clk,
interface ch);

data_type d;
...
ch.write(d);

endmodule

Module inherits 
communication 

method from 
interface

interface

send receive

parallelserial

Simplifies design exploration
Extends block-based design to the communication between blocks

Using Different Interfaces
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Conventional Verification 
Strategy

tbA

A

tbB

B

• Pre-
Integration

Test 
Subblocks in 

isolation

• Post-
Integration

tbS

A B

S
Only need to 

test 
interconnect 

structure. 
(missing wires, 
twisted busses)

• Testbench reuse 
problems

• tbA and tbB separate

• Complex 
interconnect

• Hard to create tests 
to check all signals

• Slow, runs whole 
design even if only 
structure is tested
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SystemVerilog Verification 
Strategy

tbA

A

tbB

B

• Pre-Integration

Test 

interfaces in 

isolation

• Post-Integration

I I

tbS

A BI

S

I

tbI

Protocol bugs 
already flushed 

out

• Interfaces provide 
reusable 
components

• tbA and tbB are 
‘linked’

• Interface is 
executable spec

• Wiring up is simple 
and not error prone

• Interfaces can 
contain protocol 
checkers and 
coverage counters

• Start Chip-Level 
Verification at the 
Block Level
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Operator Overloading
• Enable use of simple operators with Complex SV Types

struct3 = struct1 + struct2
• Operator Overloading is allowed for type combinations 

not already defined by SV Syntax
bind overload_operator function data_type
function_identifier (overload_proto_formals)

typedef struct {
bit sign;
bit [3:0] exponent;
bit [10:0] mantissa;

} float;

bind + function float faddfr(float, real);
bind + function float faddff(float, float);

float A, B, C, D;

assign A = B + C; //equivalent to A = faddff(B, C);
assign D = A + 1.0; //equivalent to A = faddfr(A, 1.0);
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Packages and Separate 
Compilation
• Allows sharing of:

• nets, variables, types, 
• tasks, functions
• classes, extern 

constraints, extern 
methods

• parameters, localparams, 
spec params

• properties, sequences
• Allows unambiguous 

references to shared 
declarations

• Built-in functions and types 
included in std package

• Groups of files can now be 
compiled separately

package ComplexPkg;

typedef struct {
float i, r;
} Complex;

function Complex add(Complex a, b)
add.r = a.r + b.r;
add.i = a.i + b.i;

endfunction

function Complex mul(Complex a, b)
mul.r = (a.r * b.r) + (a.i * b.i);
mul.i = (a.r * b.i) + (a.i * b.r);

endfunction

endpackage : ComplexPkg

module foo (input bit clk);
import ComplexPkg::*
Complex a,b;

always @(posedge clk)
c = add(a,b);

endmodule
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Agenda
• Introduction
• SystemVerilog Design Features
• SystemVerilog Assertions
• SystemVerilog Verification Features
• Using SystemVerilog and VHDL Together
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What is an Assertion?
A concise description of [un]desired behavior

“After the request signal is asserted, the
acknowledge signal must come 1 to 3 cycles later”

0     1     2     3     4      5     
req

ack
Example intended behavior
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always @(posedge req)
begin

repeat (1) @(posedge clk);
fork: pos_pos

begin
@(posedge ack)
$display("Assertion Success",$time);
disable pos_pos;

end
begin

repeat (2) @(posedge clk);
$display("Assertion Failure",$time);
disable pos_pos;

end
join

end // always

Verilog

property req_ack;
@(posedge clk) req ##[1:3] $rose(ack);

endproperty
as_req_ack: assert property (req_ack);

SVA Assertion

HDL Assertion

req

ack

0     1    2    3    4    5

Example intended behavior

Concise and Expressive SVA

sample_inputs : process (clk)
begin
if rising_edge(clk) then
STROBE_REQ <= REQ;
STROBE_ACK <= ACK;

end if;
end process;
protocol: process
variable CYCLE_CNT : Natural;

begin
loop
wait until rising_edge(CLK); 
exit when (STROBE_REQ = '0') and (REQ = '1');

end loop;
CYCLE_CNT := 0;
loop
wait until rising_edge(CLK);
CYCLE_CNT := CYCLE_CNT + 1;
exit when ((STROBE_ACK = '0') and (ACK = '1')) or (CYCLE_CNT = 3);

end loop;
if ((STROBE_ACK = '0') and (ACK = '1')) then
report "Assertion success" severity Note;

else
report "Assertion failure" severity Error;

end if;
end process protocol;

VHDL
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Sequential Regular Expressions

• Describing a sequence of events
• Sequences of Boolean expressions can be described 

with a specified time step in-between 

@(posedge clk) a ##1 b ##4 c ##[1:5] z;

clk

z
c

b
a
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Property Definition 
• Property Declaration: property

• Declares property by name
• Formal parameters to enable property reuse 
• Top Level Operators

–not desired/undesired
–disable iff reset
–|->, |=> precondition

• Assertion Directives
• assert – checks that the property is never violated
• cover – tracks all occurrences of property

property prop1(a,b,c,d); 
disable iff (reset)

(a) |-> [not](b ##[2:3]c ##1 d);
endproperty

assert1: assert prop1 (g1, h2, hxl, in3);
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Manipulating Data:
Local Dynamic Variables
• Declared Locally within Sequence/Property

• New copy of variable for each sequence invocation
• Assigned anywhere in the sequence 
• Value of assigned variable remains stable until 

reassigned in a sequence

property e;
int x;
(valid,(x=in))|=> ##5(out==(x+1));
endproperty

valid

Local Dynamic Variable Example

in

out

EA BF

EB C0
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Embedding Concurrent Assertions

always @(posedge clk or negedge reset)
if(reset == 0) do_reset;
else if (mode == 1)
case(st)
REQ: if (!arb)

if (foo) 
st <= REQ2;

property p1;
@(posedge clk) ((reset == 1) && (mode == 1) 

&& (st == REQ) && (!arb) && (foo)) => s1;
endproperty

DA: assert property (p1);

• Requires User to Update 
Manually as Design 
Changes

PA: assert property (s1);

• Automatically Updates 
Enabling Condition as 
Design Changes
• Infers clock from 
instantiation

property s1;
(req && !gnt)[*0:5] ##1 gnt && req ##1 !req ;

endproperty
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Bind statement

Top

module cpu(a,b);
reg c;
...
endmodule

cpu1

module cpu(a,b);
reg c;
...
endmodule

cpu2

program cpu_props(input d,e,f);
assert property (d ##1 e |=> f[*3]);
endprogram

bindbind cpu cpu_props cpu_rules1(a,b,c);

Equivalent to:
assert property (top.cpu1.a ##1 top.cpu1.b |=> top.cpu1.c[*3]);
assert property (top.cpu2.a ##1 top.cpu2.b |=> top.cpu2.c[*3]);
or
cpu_props cpu_rules1(a,b,c); // in module cpu

module/instance name

program name

instance name

bind module_or_instance_name instantiation;

Bind assertions to VHDL code
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Flexible Assertions Use-Model
• Design Engineers

• Able to define assertions in-line with design code
• Assertions typically cover implementation-level 

detail
• Capture assumptions while they’re fresh in the 

designer’s mind
• Verification Engineers

• Able to define assertions external to RTL code and 
“bind” them to the design

• Assertions typically cover interface/system 
behavior

• Do not need to modify the golden RTL to add 
assertions
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Agenda
• Introduction
• SystemVerilog Design Features
• SystemVerilog Assertions
• SystemVerilog Verification Features
• Using SystemVerilog and VHDL Together



42

Dynamic Arrays
Declaration syntax
<type> <identifier> [ ];
bit[3:0] dyn[ ];

Initialization syntax
<array> = new[<size>];
dyn = new[4];

Equivalent to:
bit[3:0] dyn[0:3];

Size method
function int size();
int j = dyn.size;//j=4

Resize syntax
dyn = new[j * 2];

Equivalent to:
bit[3:0] dyn[0:7];

dyn
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Associative Arrays
• Sparse Storage
• Elements Not Allocated Until Used
• Index Can Be of Any Packed Type, String or Class

Declaration syntax
<type> <identifier> [<index_type>];
<type> <identifier> [*]; // “arbitrary” type

Example
struct packed {int a; logic[7:0] b} mystruct;
int myArr [mystruct]; //Assoc array indexed by mystruct

Built-in Methods
num(), delete([index]), exists(index);
first/last/prev/next(ref index);

Ideal for Dealing with Sparse Data
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Queues
• Variable-sized Array: data_type name [$]

• Uses array syntax and operators
int q[$] = { 2, 4, 8 }; int e, pos, p[$];
e = q[0]; // read the first (leftmost) item
e = q[$]; // read the last (rightmost) item
q = { q, 6 }; // append: insert ‘6’ at the end
q = { e, q }; // insert ‘e’ at the beginning
q = q[1:$]; // delete the first (leftmost) item
q = q[1:$-1]; // delete the first and last items

• Synthesizable if maximum size is known
• q[$:25] // maximum size is 25
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Dynamic Processes and Threads
• SystemVerilog adds dynamic parallel processes 

using fork/join_any and fork/join_none

join_any

fork

join

fork

join_none

fork

• Threads created via fork…join
• Threads execute until a blocking statement

• wait for: (event, mailbox, semaphore, variable, etc.)
• disable fork to terminate child processes
• wait_child to wait until child processes complete

• Built-in process object for fine-grain control
Multiple Independent Threads

Maximize Stimulus Interactions
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• Events
• Events are variables – can be copied, passed to tasks, 

etc.
• event.triggered; // persists throughout timeslice, 

avoids races
• wait_order(), wait_any(), wait_all(<events>);

• Semaphore – Built-in Class

• Mailbox – Built-in Class
• Arbitrary type

Ensures meaningful, race-free 
communication between processes

semaphore semID = new(1);
semID.get(1);
semID.put(1);

keys

mailbox #(type) mbID = new(5);
mbID.get(msg);
mbID.put(msg); pa

ck
et

1

pa
ck

et
N

Inter-Process Synchronization
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Class Definition
Definition syntax
class name;
<data_declarations>;
<task/func_decls>;
endclass

class Packet;
bit[3:0] cmd;
int status;
myStruct header;

function int get_status();
return(status);

endfunction

endclass

task Packet::set_cmd(input bit[3:0] a);
cmd = a;

endtask

extern keyword 
allows for out-of-body 
method declaration

“::” operator links 
method declaration to 

Class definition

extern task set_cmd(input bit[3:0] a);

Note: Class declaration does 
not allocate any storage
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cmd
status

header

myPkt

Class Instantiation

• User may override default “new” method
• Assign values, call functions, etc.
• User-defined new method may take arguments

• Garbage Collection happens automatically

Packet myPkt;

Declare myPkt handle;
No storage allocated yet

Packet myPkt = new;

Call to “new” method 
allocates storage for object
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Class Inheritance
•Keyword extends
Denotes Hierarchy of 
Class Definitions

• Subclass inherits 
properties, constraints 
and methods from 
parent

• Subclass can redefine 
methods explicitly

class ErrPkt extends Packet;
bit[3:0] err;

function bit[3:0] show_err();
return(err);

endfunction

task set_cmd(input bit[3:0] a);
cmd = a+1;

endtask // overrides Packet::set_cmd
endclass

Packet:
cmd

status

header

get_status

set_cmd
cmd = a;

ErrPkt:

show_err

set_cmd
cmd = a+1;

cmd
status

header

get_status

err

Allows Customization Without Breaking or Rewriting
Known-Good Functionality in the Base Class
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Design

Constrained Random Simulation

Constraints

Test Scenarios

Constraints

Input Space

Valid

Constraint Solver
• Find solutions

• Valid Inputs Specified as Constraints
• Declarative

Exercise Hard-to-Find Corner Cases
While Guaranteeing Valid Stimulus
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• Constraints are Declarative
class Bus;
rand bit[15:0] addr;
rand bit[31:0] data;
randc bit[3:0] mode;
constraint word_align {addr[1:0] == 2’b0;}
endclass

• Calling randomize selects values for all 
random variables in an object such that all 
constraints are satisfied

• Generate 50 random data and word_aligned addr values
Bus bus = new;
repeat (50)
if ( bus.randomize() == 1 ) // 1=success,0=failure
$display ("addr = %16h data = %h\n", bus.addr,
bus.data);

else
$display ("Randomization failed.\n");

Basic Constraints
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In-Line Constraints

• Additional Constraints In-line Via
obj.randomize()with <constraint_blk>

task exerBus(MyBus m);

int r;
r = m.randomize() with {type==small};

endtask

Force type
to be small

• In-Line Constraints Pick Up Variables From 
the Object
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Layered Constraints

• Constraints Inherited via Class Extension
• Just like data and methods, constraints can be 

inherited or overridden
typedef enum { low, high, other } AddrType ;

class MyBus extends Bus;
rand AddrType type;
constraint addr_rang {
( type == low  ) => addr in { [  0 :  15] };
( type == high ) => addr in { [128 : 255] }; }

endclass

type variable 
selects address 

range

Allows Reusable Objects to be Extended and/or
Constrained to Perform Specific Functions

• Bus::word_align Constraint is also active
• Inheritance allows layered constraints
• Constraints can be enabled/disabled

via constraint_mode() method
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Weighted Random Case
• Randomly select one statement

• Label expressions specify distribution weight

• If a == 4:
–branch 1 taken with 3/8 probability (37.5%)
–branch 2 taken with 1/8 probability (12.5%)
–branch 3 taken with 4/8 probability (50.0%)

randcase
3 : x = 1; // branch 1
1 : x = 2; // branch 2
a : x = 3; // branch 3

endcase
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Scope Randomization & 
Constraint Checking
• randomize method can be applied to any 

variable

• Constraints can be checked in-line

[std::] randomize ( [ variable_list ] ) [ with { constraint_block } ]
module stim;

bit[15:0] a;
bit[31:0] b;

function bit gen_stim();
bit success, rd_wr;
success = randomize( a, b, rd_wr ) with { a > b };
return rd_wr ;

endfunction
...
endmodule

Optional “::” namespace operator to 
disambiguate method name

status = class_obj.randomize(null);

Passing “null” argument to randomize
checks the constraints

0 = valid, 1 = invalid
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Functional Coverage
• New covergroup container allows 

declaration of
• coverage points

–variables
–expressions
–transitions

• cross coverage
• sampling expression : clocking event 

enum { red, green, blue } color;
bit [3:0] pixel_adr;

covergroup g1 @(posedge clk);
c: coverpoint color;
a: coverpoint pixel_adr;
AxC: cross color, pixel_adr;

endgroup;

3 bins for color

16 bins for pixel

48 (=16 * 3)
cross products

Sample event
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Synchronous Interfaces: Clocking

device bus
enable
full

clk

empty
data[7:0]

Synchronous
Interface

clocking bus @(posedge clk);

default input #1ns output #2ns;

input enable, full;

inout data;

output empty;

endclocking

Clocking Event “clock”
Default I/O skew

initial begin

tb_en = bus.enable; // read sampled value of enable
bus.empty <= 1; // write “empty” after 2 ns

end
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Program Block
• Purpose: Identifies verification code
• A program differs from a module

• Only initial blocks allowed
• Special semantics

– Executes in Reactive region
design → clocking/assertions → program

• Program block variables cannot be modified by 
the design
program name (<port_list>);

<declarations>;// type, func, class, clocking…
<continuous_assign>
initial <statement_block>

endprogram

The Program block functions pretty much like a C program
Testbenches are more like software than hardware
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TB + Assertions Example
A new bus cycle may not start for 2 clock 
cycles after an abort cycle has completed

sequence abort_cycle;
!rdy throughout (as ##1 ds[*1:$] ##1 abort);
endsequence

cover property (@(posedge clk) abort_cycle)
wait_cnt = 2;

program manual_stimulus_generator;
repeat(1000) begin
generate_transaction(addr,data);
while(wait_cnt > 0)

@(posedge clk) wait_cnt--;
end

endprogram

Simulation Monitors
and Constraints

for Formal
Analysis

property wait_after_abort;
@(posedge clk) abort_cycle |=> !as[*2]; 

endproperty
assert property (wait_after_abort);

as
ds
rdy

abort
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SystemVerilog Enhanced Scheduling

Next
Time Slot

Previous
Time Slot

Read-Only

Active

Inactive

NBA
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SystemVerilog Enhanced Scheduling

Next
Time Slot

Previous
Time Slot

Postponed

Verilog
2001

SystemVerilog
3.1

Active

Inactive

NBA

Reactive

Observe

Preponed

Evaluate 
Assertions

Execute 
TestBench

Sample 
Stable
Values
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Agenda
• Introduction
• SystemVerilog Design Features
• SystemVerilog Assertions
• SystemVerilog Verification Features
• Using SystemVerilog and VHDL Together
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SystemVerilog With VHDL
• Verilog-VHDL Interface limited to net/vector 

types
• VHDL records and arrays packed into bit 

vectors
• SystemVerilog supports higher-level data 

types
• Synthesizable types are synthesizable across 

the interface

EnumEnum

ArrayArray
StructRecord

SystemVerilog VHDL

Multi-D ArrayMulti-D Array
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Pure VHDL Simulation Flow

VHDL RTL VHDL

Design Testbench

• Coherent environment for design and verification  
• Limited testbench capabilities in VHDL “promote” a 

directed test based verification methodology
• Lack of constrained random / assertion / coverage

low “bug-finding effectiveness”

+ Single language (VHDL)  for 
design and testbench

- No constrained
random TB

- No temporal
assertions

- No functional
coverage

Performance

Effectiveness
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Performance

Effectiveness

SystemVerilog is Evolutionary for 
VHDL and Verilog Users

• Increases productivity for 
Design and Verification
• Concise coding constructs
• Rich assertions
• Complete testbench

– Constrained Random 
Data

– Functional Coverage

Design

VHDL / Verilog
(Behavioral

RTL)

HVL

C/C++

VHPI / FLI

Testbench
SystemVerilog

VHDL/ Verilog

Design

 Assertions

Testbench

SystemVerilog

 Assertions
Testbench

Design
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The Importance of a Single 
Language

Reuse of Syntax/Concepts
• Sampling for assertions and clocking domains
• Method syntax
• Queues use common concat/array operations
• Constraints in classes and procedural code

Knowledge of 
Other Language 
Features
• Testbench and 
Assertions
• Interfaces and 
Classes
• Sequences 
and Events

Unified Scheduling
• Basic Verilog 
won’t work
• Ensures Pre/Post-
Synth Consistency
• Enables 
Performance 
Optimizations
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SystemVerilog Benefits for VHDL Users
• Many VHDL modeling features are in SystemVerilog 

• Don’t have to give up high-level data types
• Some features (enums) extended beyond VHDL 

capabilities
• Mixed-HDL environments are a reality

• Higher-level data types supported across boundary
• Continue to use VHDL legacy blocks
• Easier to adopt SystemVerilog incrementally

• Industry-Standard Verification Language works 
with VHDL designs

• Constrained random data generation
• Object-oriented 
• Assertions

• SystemVerilog supports Design for Verification
• Interfaces and assertions capture design intent
• Efficient and intuitive interactions between testbench and 

assertions
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Unified Unified 
LanguageLanguage

Unified Unified 
MethodologyMethodology Axes of Verification Productivity

Evolution of Verification Productivity

Unified Unified 
PlatformsPlatformsCoverageCoverage

AssertionsAssertions

FormalFormal
TestbenchTestbench

C++C++

MixedMixed--HDLHDL


