
SystemVerilog for VHDL Users

Tom Fitzpatrick
Principal Technical Specialist

Synopsys, Inc.

2

Agenda
• Introduction
• SystemVerilog Design Features
• SystemVerilog Assertions
• SystemVerilog Verification Features
• Using SystemVerilog and VHDL Together

3

SystemVerilog Charter
• Charter: Extend Verilog IEEE 2001 to higher

abstraction levels for Architectural and
Algorithmic Design , and Advanced
Verification.

Verilog

Architectural

Design
Abstraction:

Interface
semantics, abstract

data types,
abstract operators
and expressions

DPI &
 A

PI

Inter
fac

e
Direct C interface,
Assertion API and

Coverage API

Veri
log

Test
ben

ch

Transaction-Level
Full Testbench
Language with

Coverage

Verilog
Assertion

Advanced
verification capability

for semiformal and
formal methods.

The Assertion
Language Standard

For Verilog

IEEE
Verilog

2001

4

SystemVerilog: Verilog 1995

Gate level modelling
and timing

Hardware concurrency
design entity modularization

Switch level modeling and timing

Event handling Basic datatypes (bit, int, reg, wire…)

ASIC timing

Basic programming (for, if, while,..)4 state logic Verilog-95:
Single language

for design &
testbench

5

SystemVerilog: VHDL

Dynamic
hardware
generation

Architecture
configuration

Automatic variables Signed numbers

multi-D arrays

Dynamic
memory
allocation

pointers

Gate level modelling
and timing

Hardware concurrency
design entity modularization

Switch level modeling and timing

Event handling Basic datatypes (bit, int, reg, wire…)

ASIC timing

Basic programming (for, if, while,..)4 state logic

enums
records/
structs

Packages

Strings

VHDL adds
higher level

data types and
management
functionality

Operator
Overloading

User-defined types

Simple assertions

6

Semantic Concepts: C

Dynamic
hardware
generation

Architecture
configuration

Automatic variables Signed numbers

multi-D arrays

pointers

Gate level modelling
and timing

Hardware concurrency
design entity modularization

Switch level modeling and timing

Event handling Basic datatypes (bit, int, reg, wire…)

ASIC timing

Basic programming (for, if, while,..)4 state logic

enums

Operator
OverloadingPackages

Further
programming
(do while,
break, continue,
++, --, +=. etc)

Void type
Unions

Associative
& Sparse arraysDynamic

memory
allocation

records/
structs

Strings

C has extra
programming features

but lacks all hardware
concepts

User-defined types

Simple assertions

7

SystemVerilog: Verilog-2001

Dynamic
hardware
generation

Architecture
configuration

Gate level modelling
and timing

Hardware concurrency
design entity modularization

Switch level modeling and timing

Event handling

ASIC timing

4 state logic

Automatic variables Signed numbers

multi-D arrays

pointers

Basic datatypes (bit, int, reg, wire…)

Basic programming (for, if, while,..)

enums

Operator
OverloadingPackages

Void type
Unions

Dynamic
memory
allocation

records/
structs

Strings

User-defined types

Simple assertions

Further
programming
(do while,
break, continue,
++, --, +=. etc)

Associative
& Sparse arrays

Verilog-2001 adds a lot of
VHDL functionality but still

lacks advanced data
structures

8

SystemVerilog: Enhancements

Process
ControlInterface

Specification
Temporal
Properties

Packed structs
and unions

Classes, methods
& inheritance

Queues

Constrained
Random Data
Generation Functional

Coverage
Semaphores

C interfaceCoverage &
Assertion
API

Sequential
Regular
Expressions

Enhanced Scheduling for
Testbench and Assertions

Mailboxes
Persistent
events

Virtual
Interfaces

Program
Block

Clocking
Domain

Cycle
Delays

Sequence
Events

Dynamic
hardware
generation

Architecture
configuration

Gate level modelling
and timing

Hardware concurrency
design entity modularization

Switch level modeling and timing

Event handling

ASIC timing

4 state logic

Automatic variables Signed numbers

multi-D arrays

safe pointers

Basic datatypes (bit, int, reg, wire…)

Basic programming (for, if, while,..)

enums

Operator
OverloadingPackages

Void type
Unions

Dynamic
memory
allocation

records/
structs

Strings

User-defined types

Simple assertions

Further
programming
(do while,
break, continue,
++, --, +=. etc)

Associative
& Sparse arrays

SystemVerilo
g

3.1 provides

advanced

verific
ation and

modeling

features

9

SystemVerilog: Unified Language

Process
ControlInterface

Specification
Temporal
Properties

Packed structs
and unions

Classes, methods
& inheritance

Queues

Constrained
Random Data
Generation Functional

Coverage
Semaphores

C interfaceCoverage &
Assertion
API

Sequential
Regular
Expressions

Enhanced Scheduling for
Testbench and Assertions

Mailboxes
Persistent
events

Virtual
Interfaces

Program
Block

Clocking
Domain

Cycle
Delays

Sequence
Events

Dynamic
hardware
generation

Architecture
configuration

Gate level modelling
and timing

Hardware concurrency
design entity modularization

Switch level modeling and timing

Event handling

ASIC timing

4 state logic

Automatic variables Signed numbers

multi-D arrays

safe pointers

Basic datatypes (bit, int, reg, wire…)

Basic programming (for, if, while,..)

enums

Operator
OverloadingPackages

Void type
Unions

Dynamic
memory
allocation

records/
structs

Strings

User-defined types

Simple assertions

Further
programming
(do while,
break, continue,
++, --, +=. etc)

Associative
& Sparse arrays

10

SystemC & SystemVerilog

Platform
Based
Design

RTL

Gates

…. Verilog/VHDL

SystemVerilog

RTL

Gates

Testbench
Assertions
Coverage

Transaction
Level (TL)

SystemC

Software

RTL

SystemTestbench

Assertions

Coverage

RTL

Gates

11

Agenda
• Introduction
• SystemVerilog Design Features
• SystemVerilog Assertions
• SystemVerilog Verification Features
• Using SystemVerilog and VHDL Together

12

Basic SystemVerilog Data Types

reg r; // 4-state Verilog-2001 single-bit datatype
integer i; // 4-state Verilog-2001 >= 32-bit datatype
bit b; // single bit 0 or 1
logic w; // 4-valued logic, x 0 1 or z as in Verilog
byte b8; // 8 bit signed integer
int i; // 2-state, 32-bit signed integer

Explicit 2-state Variables Allow Compiler
Optimizations to Improve Performance

The unresolved type “logic” in SystemVerilog
is equivalent to “std_ulogic” in VHDL

13

Familiar C Features In SystemVerilog

do
begin
if ((n%3) == 0) continue;
if (foo == 22) break;

end
while (foo != 0);
…

continue starts
next loop iteration

break exits
the loop

(= “exit” in VHDL

works with:
for
while
forever
repeat
do while

if ((a=b)) …
while ((a = b || c))

Blocking Assignments
as expressions

Extra parentheses
required to distinguish

from if(a==b)

x++;
if (--c > 17) c=0;

Auto increment/
decrement operators

14

SystemVerilog Struct = Record
typedef struct {
logic PARITY;
logic[3:0] ADDR;
logic[3:0] DEST;

} pkt_t;

type PKT_T is record
PARITY: std_ulogic;
ADDR: std_ulogic_vector(3 downto 0);
DEST: std_ulogic_vector(3 downto 0);

end record;

signal MYPKT : PKT_T;
...
MYPKT.ADDR <= “1100”;

pkt_t mypkt;
...
mypkt.ADDR = 12;

The mypkt
structure/
record is

“unpacked”

PARITY
ADDR
DEST

0331

In SystemVerilog, struct variables can
also be declared directly, without the typedef

struct {
bit [7:0] opcode;
bit [23:0] addr;
} IR;

no typedef

Structure definitions are just like in C but
without the optional structure tag before the ‘{‘

15

Packed Structures and Unions
typedef struct packed {
logic [15:0] source_port;
logic [15:0] dest_port;
logic [31:0] sequence;

} tcp_t;
typedef struct packed {
logic [15:0] source_port;
logic [15:0] dest_port;
logic [15:0] length;
logic [15:0] checksum

} udp_t;

typedef union packed {
tcp_t tcp_h;
udp_t udp_h;
bit [63:0] bits;
bit [7:0][7:0] bytes;

} ip_t;

ip_t ip_h;
logic parity;

ip_h.udp_h.length = 5;
ip_h.bits[31:16] = 5;
ip_h.bytes[3:2] = 5;

parity = ^ip_h;

All
members
of a union

must
be the

same size

source_port checksumlengthdest_port

source_port sequencedest_porttcp_t

udp_t

Create multiple layouts for accessing data
VHDL records not explicitly packed

Equivalent

Operate on entire
structure as a whole

16

Type Conversion
typedef struct {
logic PARITY;
logic[3:0] ADDR;
logic[3:0] DEST;

} pkt_t;

typedef bit[8:0] vec_t;

pkt_t mypkt;
vec_t myvec;

myvec = vec_t’(mypkt);
mypkt = pkt_t’(myvec);

User-defined types and explicit casting
improve readability and modularity

Unpacked Structure

User-defined type:
packed bit vector

Cast mypkt as type vec_t

Similar to Qualified Expressions
or conversion functions in VHDL

Cast myvec as type pkt_t

17

Data Organization - Enum
type FSM_ST is

{IDLE,
INIT,
DECODE,
…};

signal pstate, nstate : FSM_ST;

case (pstate) is

when idle:
if (sync = ‘1’) then

nstate <= init;
end if;

when init:
if (rdy = ‘1’) then

nstate = decode;
end if;

…
end case;

VHDL enums not explicitly typed

typedef enum
{idle,
init,
decode,
…} fsmstate;

fsmstate pstate, nstate;

case (pstate)

idle: if (sync)
nstate = init;

init: if (rdy)
nstate = decode;

…
endcase

typedef enum logic [2:0]
{idle,
init,
decode,
…} fsmstate;

typedef enum logic [2:0]
{idle = 0,
init = 3,
decode, // = 4
…} fsmstate;

VHDL: SystemVerilog:

18

Packed and Unpacked Arrays
bit a [3:0];unpacked

array of
bits

Don’t get them mixed upDon’t get them mixed up

a0

a1

a2

a3
unused

bit [3:0] p;
packed
array of

bits
p0p1p2p3

bit [15:0] memory [1023:0];
memory[i] = ~memory[i];
memory[i][15:8] = 0;

bit [15:0][1023:0] Frame;
always @inv Frame = ~Frame;

1k 16 bit
unpacked
memory Packed

indexes can be
sliced1k 16 bit

packed
memory

Can operate on
entire memory

SystemVerilog also includes the VHDL-like array attribute functions:
$left, $right, $low, $high, $increment, $length and $dimensions

19

Pre-Post Synthesis Mismatches

• Causes
• Sensitivity list mismatches
• Pragmas affect synthesis but not simulation

• SystemVerilog Solves these problems
• Specialized always blocks automate sensitivity
• Synthesis directives built into the language

RTL
Gates

Synthesis

=/

20

Design Intent – always_{comb,latch,ff}
• always blocks do not

guarantee capture of intent
• If not edge-sensitive then

only a warning if latch
inferred

• always_comb, always_latch
and always_ff are explicit

• Compiler Now Knows User
Intent and can flag errors
accordingly

//OOPS forgot Else but it’s
//only a synthesis warning

always @(a or b)
if (b) c = a;

//Compiler now asks
//“Where’s the else?”
always_comb

if (b) c = a;
//Intent: Conditional
// Assignment
always_latch

if (clk)
if (en) Q <= d;

//Conversely unconditionally
//assigned –is it a latch?

always_latch
q <=d

21

always_comb Sensitivity
• always_comb eliminates sensitivity list issues

• Ensures synthesis-compatible sensitivity
• Helps reduce “spaghetti code”

• Consider that always_comb derives sensitivity from
• RHS/expr in process
• RHS/expr of statements in Function Calls

logic avar,a,b,c,d,e;
logic [1:0] sel;

always_comb begin

a = b;
StepA();

end
function StepA

case (sel)
2’b01: avar = a | c;
2’b10: avar = d & e;
default: avar = c;

endcase
endfunction

always @(sel,b,c,d,e) begin
a = b;
case (sel)
…

endcase
end

Encapsulate blocks of
combinational logic into functions –

Easier to read and debug

22

Design Intent – Unique/Priority
• Parallel_case/full_case pragmas affect synthesis behavior

but not simulation behavior
• Unique keyword means that one and only one branch will be taken

(same as full_case parallel_case)
• Priority keyword means that the first branch will be taken (same

as full_case)
• Will cause simulation run-time error if illegal value is seen

unique case (sel)
sel[0] : muxo = a;
sel[1] : muxo = b;
sel[2] : muxo = c;

endcase

unique if (sel==3’b001)
muxo = a;

else if (sel == 3’b010)
muxo = b;

else if (sel == 3’b100)
muxo = c;

priority case (1’b1)
irq0: irq = 4’b1 << 0;
irq1: irq = 4’b1 << 1;
irq2: irq = 4’b1 << 2;
irq3: irq = 4’b1 << 3;

endcase

priority if (irq0)
irq = 4’b1;

else if (irq1)
irq = 4’b2;

else if (irq2)
irq = 4’b4;

No default
clause needed

No ending
else needed

sel must be
“one-hot”

irq0 has
highest
priority

23

Syntax – Implicit Named Port
Connections• Creating netlists by hand is

tedious
• Generated netlists are

unreadable
• Many signals in

instantiations
• Instantiations cumbersome

to manage
• Implicit port connections

dramatically improve
readability

• Use same signal names up
and down hierarchy where
possible

• Port Renaming Accentuated
• .name allows explicit

connections with less typing
(and less chance for error)

module top();
logic rd,wr;
tri [31:0] dbus,abus;
tb(.*);
dut(.*);

endmodule

module top();
logic rd,wr;
tri [31:0] dbus,abus;
tb tb(.*, .ireset(start),

.oreset(tbreset));
dut d1(.*,.reset(tbreset[0]));
dut d2(.rd, .wr, .dbus, .abus,

.reset(tbreset[1]));
endmodule

24

SystemVerilog Interfaces
Design On A White Board HDL Design

Complex signals
Bus protocol repeated in blocks
Hard to add signal through hierarchy

Communication encapsulated in interface
- Reduces errors, easier to modify
- Significant code reduction saves time
- Enables efficient transaction modeling
- Allows automated block verification

Bus Bus

Bus

SystemVerilog
Design Interface Bus

Signal 1
Signal 2
Read()
Write()
Assert

25

Top

CPU Mem

Example without Interface
entity memMod is
port(reg,clk,start : in bit;
mode : in std_logic_vector(1 downto 0);
addr : in std_logic_vector(7 downto 0);
data : inout std_logic_vector(7 downto 0);
gnt, rdy : out bit);

end memMod;

architecture RTL of memMod is
process (clk) begin
wait until clk’event and clk=‘1’;
gnt <= req AND avail;

end architecture RTL;

entity cpuMod is
port(clk, gnt, rdy : in bit;
data : inout std_logic_vector(7 downto 0);
req, start : out bit;
mode : out std_logic_vector(1 downto 0);
addr : out std_logic_vector(7 downto 0));

end cpuMod;

architecture RTL of cpuMod is
...
end architecture RTL;

architecture netlist of top is
signal req,gnt,start,rdy : bit;
signal clk : bit := ‘0’;
signal mode :
std_logic_vector(1 downto 0);

signal addr, data :
std_logic_vector(7 downto 0);

mem: memMod port map
(req,clk,start,mode,
addr,data,gnt,rdy);

cpu: cpuMod port map
(clk,gnt,rdy,data,
req,start,mode,addr);

end architecture netlist;

clk

req
start
gnt
rdy
mode[1:0]

addr[7:0]

data[7:0]

26

Example Using Interfaces
interface simple_bus;
logic req,gnt;
logic [7:0] addr,data;
logic [1:0] mode;
logic start,rdy;

endinterface: simple_bus

module memMod(interface a,
input bit clk);

logic avail;
always @(posedge clk)

a.gnt <= a.req & avail;
endmodule

module cpuMod(interface b,
input bit clk);

endmodule

module top;
bit clk = 0;
simple_bus sb_intf;

memMod mem(sb_intf, clk);

cpuMod cpu(.b(sb_intf),
.clk(clk));

endmodule

Top

CPU Mem
sb_intf

clk

Bundle
signals in
interface

Use interface
keyword in port list

Refer to intf
signals

interface instance

Connect
interface

27

typedef logic [31:0]
data_type;

bit clk;
always #100 clk = !clk;

parallel channel(clk);
send s(clk, channel);
receive r(clk, channel);

typedef logic [31:0]
data_type;

bit clk;
always #100 clk = !clk;

serial channel(clk);
send s(clk, channel);
receive r(clk, channel);

module send(input bit clk,
interface ch);

data_type d;
...
ch.write(d);

endmodule

Module inherits
communication

method from
interface

interface

send receive

parallelserial

Simplifies design exploration
Extends block-based design to the communication between blocks

Using Different Interfaces

28

Conventional Verification
Strategy

tbA

A

tbB

B

• Pre-
Integration

Test
Subblocks in

isolation

• Post-
Integration

tbS

A B

S
Only need to

test
interconnect

structure.
(missing wires,
twisted busses)

• Testbench reuse
problems

• tbA and tbB separate

• Complex
interconnect

• Hard to create tests
to check all signals

• Slow, runs whole
design even if only
structure is tested

29

SystemVerilog Verification
Strategy

tbA

A

tbB

B

• Pre-Integration

Test

interfaces in

isolation

• Post-Integration

I I

tbS

A BI

S

I

tbI

Protocol bugs
already flushed

out

• Interfaces provide
reusable
components

• tbA and tbB are
‘linked’

• Interface is
executable spec

• Wiring up is simple
and not error prone

• Interfaces can
contain protocol
checkers and
coverage counters

• Start Chip-Level
Verification at the
Block Level

30

Operator Overloading
• Enable use of simple operators with Complex SV Types

struct3 = struct1 + struct2
• Operator Overloading is allowed for type combinations

not already defined by SV Syntax
bind overload_operator function data_type
function_identifier (overload_proto_formals)

typedef struct {
bit sign;
bit [3:0] exponent;
bit [10:0] mantissa;

} float;

bind + function float faddfr(float, real);
bind + function float faddff(float, float);

float A, B, C, D;

assign A = B + C; //equivalent to A = faddff(B, C);
assign D = A + 1.0; //equivalent to A = faddfr(A, 1.0);

31

Packages and Separate
Compilation
• Allows sharing of:

• nets, variables, types,
• tasks, functions
• classes, extern

constraints, extern
methods

• parameters, localparams,
spec params

• properties, sequences
• Allows unambiguous

references to shared
declarations

• Built-in functions and types
included in std package

• Groups of files can now be
compiled separately

package ComplexPkg;

typedef struct {
float i, r;
} Complex;

function Complex add(Complex a, b)
add.r = a.r + b.r;
add.i = a.i + b.i;

endfunction

function Complex mul(Complex a, b)
mul.r = (a.r * b.r) + (a.i * b.i);
mul.i = (a.r * b.i) + (a.i * b.r);

endfunction

endpackage : ComplexPkg

module foo (input bit clk);
import ComplexPkg::*
Complex a,b;

always @(posedge clk)
c = add(a,b);

endmodule

32

Agenda
• Introduction
• SystemVerilog Design Features
• SystemVerilog Assertions
• SystemVerilog Verification Features
• Using SystemVerilog and VHDL Together

33

What is an Assertion?
A concise description of [un]desired behavior

“After the request signal is asserted, the
acknowledge signal must come 1 to 3 cycles later”

0 1 2 3 4 5
req

ack
Example intended behavior

34

always @(posedge req)
begin

repeat (1) @(posedge clk);
fork: pos_pos

begin
@(posedge ack)
$display("Assertion Success",$time);
disable pos_pos;

end
begin

repeat (2) @(posedge clk);
$display("Assertion Failure",$time);
disable pos_pos;

end
join

end // always

Verilog

property req_ack;
@(posedge clk) req ##[1:3] $rose(ack);

endproperty
as_req_ack: assert property (req_ack);

SVA Assertion

HDL Assertion

req

ack

0 1 2 3 4 5

Example intended behavior

Concise and Expressive SVA

sample_inputs : process (clk)
begin
if rising_edge(clk) then
STROBE_REQ <= REQ;
STROBE_ACK <= ACK;

end if;
end process;
protocol: process
variable CYCLE_CNT : Natural;

begin
loop
wait until rising_edge(CLK);
exit when (STROBE_REQ = '0') and (REQ = '1');

end loop;
CYCLE_CNT := 0;
loop
wait until rising_edge(CLK);
CYCLE_CNT := CYCLE_CNT + 1;
exit when ((STROBE_ACK = '0') and (ACK = '1')) or (CYCLE_CNT = 3);

end loop;
if ((STROBE_ACK = '0') and (ACK = '1')) then
report "Assertion success" severity Note;

else
report "Assertion failure" severity Error;

end if;
end process protocol;

VHDL

35

Sequential Regular Expressions

• Describing a sequence of events
• Sequences of Boolean expressions can be described

with a specified time step in-between

@(posedge clk) a ##1 b ##4 c ##[1:5] z;

clk

z
c

b
a

36

Property Definition
• Property Declaration: property

• Declares property by name
• Formal parameters to enable property reuse
• Top Level Operators

–not desired/undesired
–disable iff reset
–|->, |=> precondition

• Assertion Directives
• assert – checks that the property is never violated
• cover – tracks all occurrences of property

property prop1(a,b,c,d);
disable iff (reset)

(a) |-> [not](b ##[2:3]c ##1 d);
endproperty

assert1: assert prop1 (g1, h2, hxl, in3);

37

Manipulating Data:
Local Dynamic Variables
• Declared Locally within Sequence/Property

• New copy of variable for each sequence invocation
• Assigned anywhere in the sequence
• Value of assigned variable remains stable until

reassigned in a sequence

property e;
int x;
(valid,(x=in))|=> ##5(out==(x+1));
endproperty

valid

Local Dynamic Variable Example

in

out

EA BF

EB C0

38

Embedding Concurrent Assertions

always @(posedge clk or negedge reset)
if(reset == 0) do_reset;
else if (mode == 1)
case(st)
REQ: if (!arb)

if (foo)
st <= REQ2;

property p1;
@(posedge clk) ((reset == 1) && (mode == 1)

&& (st == REQ) && (!arb) && (foo)) => s1;
endproperty

DA: assert property (p1);

• Requires User to Update
Manually as Design
Changes

PA: assert property (s1);

• Automatically Updates
Enabling Condition as
Design Changes
• Infers clock from
instantiation

property s1;
(req && !gnt)[*0:5] ##1 gnt && req ##1 !req ;

endproperty

39

Bind statement

Top

module cpu(a,b);
reg c;
...
endmodule

cpu1

module cpu(a,b);
reg c;
...
endmodule

cpu2

program cpu_props(input d,e,f);
assert property (d ##1 e |=> f[*3]);
endprogram

bindbind cpu cpu_props cpu_rules1(a,b,c);

Equivalent to:
assert property (top.cpu1.a ##1 top.cpu1.b |=> top.cpu1.c[*3]);
assert property (top.cpu2.a ##1 top.cpu2.b |=> top.cpu2.c[*3]);
or
cpu_props cpu_rules1(a,b,c); // in module cpu

module/instance name

program name

instance name

bind module_or_instance_name instantiation;

Bind assertions to VHDL code

40

Flexible Assertions Use-Model
• Design Engineers

• Able to define assertions in-line with design code
• Assertions typically cover implementation-level

detail
• Capture assumptions while they’re fresh in the

designer’s mind
• Verification Engineers

• Able to define assertions external to RTL code and
“bind” them to the design

• Assertions typically cover interface/system
behavior

• Do not need to modify the golden RTL to add
assertions

41

Agenda
• Introduction
• SystemVerilog Design Features
• SystemVerilog Assertions
• SystemVerilog Verification Features
• Using SystemVerilog and VHDL Together

42

Dynamic Arrays
Declaration syntax
<type> <identifier> [];
bit[3:0] dyn[];

Initialization syntax
<array> = new[<size>];
dyn = new[4];

Equivalent to:
bit[3:0] dyn[0:3];

Size method
function int size();
int j = dyn.size;//j=4

Resize syntax
dyn = new[j * 2];

Equivalent to:
bit[3:0] dyn[0:7];

dyn

43

Associative Arrays
• Sparse Storage
• Elements Not Allocated Until Used
• Index Can Be of Any Packed Type, String or Class

Declaration syntax
<type> <identifier> [<index_type>];
<type> <identifier> [*]; // “arbitrary” type

Example
struct packed {int a; logic[7:0] b} mystruct;
int myArr [mystruct]; //Assoc array indexed by mystruct

Built-in Methods
num(), delete([index]), exists(index);
first/last/prev/next(ref index);

Ideal for Dealing with Sparse Data

44

Queues
• Variable-sized Array: data_type name [$]

• Uses array syntax and operators
int q[$] = { 2, 4, 8 }; int e, pos, p[$];
e = q[0]; // read the first (leftmost) item
e = q[$]; // read the last (rightmost) item
q = { q, 6 }; // append: insert ‘6’ at the end
q = { e, q }; // insert ‘e’ at the beginning
q = q[1:$]; // delete the first (leftmost) item
q = q[1:$-1]; // delete the first and last items

• Synthesizable if maximum size is known
• q[$:25] // maximum size is 25

45

Dynamic Processes and Threads
• SystemVerilog adds dynamic parallel processes

using fork/join_any and fork/join_none

join_any

fork

join

fork

join_none

fork

• Threads created via fork…join
• Threads execute until a blocking statement

• wait for: (event, mailbox, semaphore, variable, etc.)
• disable fork to terminate child processes
• wait_child to wait until child processes complete

• Built-in process object for fine-grain control
Multiple Independent Threads

Maximize Stimulus Interactions

46

• Events
• Events are variables – can be copied, passed to tasks,

etc.
• event.triggered; // persists throughout timeslice,

avoids races
• wait_order(), wait_any(), wait_all(<events>);

• Semaphore – Built-in Class

• Mailbox – Built-in Class
• Arbitrary type

Ensures meaningful, race-free
communication between processes

semaphore semID = new(1);
semID.get(1);
semID.put(1);

keys

mailbox #(type) mbID = new(5);
mbID.get(msg);
mbID.put(msg); pa

ck
et

1

pa
ck

et
N

Inter-Process Synchronization

47

Class Definition
Definition syntax
class name;
<data_declarations>;
<task/func_decls>;
endclass

class Packet;
bit[3:0] cmd;
int status;
myStruct header;

function int get_status();
return(status);

endfunction

endclass

task Packet::set_cmd(input bit[3:0] a);
cmd = a;

endtask

extern keyword
allows for out-of-body
method declaration

“::” operator links
method declaration to

Class definition

extern task set_cmd(input bit[3:0] a);

Note: Class declaration does
not allocate any storage

48

cmd
status

header

myPkt

Class Instantiation

• User may override default “new” method
• Assign values, call functions, etc.
• User-defined new method may take arguments

• Garbage Collection happens automatically

Packet myPkt;

Declare myPkt handle;
No storage allocated yet

Packet myPkt = new;

Call to “new” method
allocates storage for object

49

Class Inheritance
•Keyword extends
Denotes Hierarchy of
Class Definitions

• Subclass inherits
properties, constraints
and methods from
parent

• Subclass can redefine
methods explicitly

class ErrPkt extends Packet;
bit[3:0] err;

function bit[3:0] show_err();
return(err);

endfunction

task set_cmd(input bit[3:0] a);
cmd = a+1;

endtask // overrides Packet::set_cmd
endclass

Packet:
cmd

status

header

get_status

set_cmd
cmd = a;

ErrPkt:

show_err

set_cmd
cmd = a+1;

cmd
status

header

get_status

err

Allows Customization Without Breaking or Rewriting
Known-Good Functionality in the Base Class

50

Design

Constrained Random Simulation

Constraints

Test Scenarios

Constraints

Input Space

Valid

Constraint Solver
• Find solutions

• Valid Inputs Specified as Constraints
• Declarative

Exercise Hard-to-Find Corner Cases
While Guaranteeing Valid Stimulus

51

• Constraints are Declarative
class Bus;
rand bit[15:0] addr;
rand bit[31:0] data;
randc bit[3:0] mode;
constraint word_align {addr[1:0] == 2’b0;}
endclass

• Calling randomize selects values for all
random variables in an object such that all
constraints are satisfied

• Generate 50 random data and word_aligned addr values
Bus bus = new;
repeat (50)
if (bus.randomize() == 1) // 1=success,0=failure
$display ("addr = %16h data = %h\n", bus.addr,
bus.data);

else
$display ("Randomization failed.\n");

Basic Constraints

52

In-Line Constraints

• Additional Constraints In-line Via
obj.randomize()with <constraint_blk>

task exerBus(MyBus m);

int r;
r = m.randomize() with {type==small};

endtask

Force type
to be small

• In-Line Constraints Pick Up Variables From
the Object

53

Layered Constraints

• Constraints Inherited via Class Extension
• Just like data and methods, constraints can be

inherited or overridden
typedef enum { low, high, other } AddrType ;

class MyBus extends Bus;
rand AddrType type;
constraint addr_rang {
(type == low) => addr in { [0 : 15] };
(type == high) => addr in { [128 : 255] }; }

endclass

type variable
selects address

range

Allows Reusable Objects to be Extended and/or
Constrained to Perform Specific Functions

• Bus::word_align Constraint is also active
• Inheritance allows layered constraints
• Constraints can be enabled/disabled

via constraint_mode() method

54

Weighted Random Case
• Randomly select one statement

• Label expressions specify distribution weight

• If a == 4:
–branch 1 taken with 3/8 probability (37.5%)
–branch 2 taken with 1/8 probability (12.5%)
–branch 3 taken with 4/8 probability (50.0%)

randcase
3 : x = 1; // branch 1
1 : x = 2; // branch 2
a : x = 3; // branch 3

endcase

55

Scope Randomization &
Constraint Checking
• randomize method can be applied to any

variable

• Constraints can be checked in-line

[std::] randomize ([variable_list]) [with { constraint_block }]
module stim;

bit[15:0] a;
bit[31:0] b;

function bit gen_stim();
bit success, rd_wr;
success = randomize(a, b, rd_wr) with { a > b };
return rd_wr ;

endfunction
...
endmodule

Optional “::” namespace operator to
disambiguate method name

status = class_obj.randomize(null);

Passing “null” argument to randomize
checks the constraints

0 = valid, 1 = invalid

56

Functional Coverage
• New covergroup container allows

declaration of
• coverage points

–variables
–expressions
–transitions

• cross coverage
• sampling expression : clocking event

enum { red, green, blue } color;
bit [3:0] pixel_adr;

covergroup g1 @(posedge clk);
c: coverpoint color;
a: coverpoint pixel_adr;
AxC: cross color, pixel_adr;

endgroup;

3 bins for color

16 bins for pixel

48 (=16 * 3)
cross products

Sample event

57

Synchronous Interfaces: Clocking

device bus
enable
full

clk

empty
data[7:0]

Synchronous
Interface

clocking bus @(posedge clk);

default input #1ns output #2ns;

input enable, full;

inout data;

output empty;

endclocking

Clocking Event “clock”
Default I/O skew

initial begin

tb_en = bus.enable; // read sampled value of enable
bus.empty <= 1; // write “empty” after 2 ns

end

58

Program Block
• Purpose: Identifies verification code
• A program differs from a module

• Only initial blocks allowed
• Special semantics

– Executes in Reactive region
design → clocking/assertions → program

• Program block variables cannot be modified by
the design
program name (<port_list>);

<declarations>;// type, func, class, clocking…
<continuous_assign>
initial <statement_block>

endprogram

The Program block functions pretty much like a C program
Testbenches are more like software than hardware

59

TB + Assertions Example
A new bus cycle may not start for 2 clock
cycles after an abort cycle has completed

sequence abort_cycle;
!rdy throughout (as ##1 ds[*1:$] ##1 abort);
endsequence

cover property (@(posedge clk) abort_cycle)
wait_cnt = 2;

program manual_stimulus_generator;
repeat(1000) begin
generate_transaction(addr,data);
while(wait_cnt > 0)

@(posedge clk) wait_cnt--;
end

endprogram

Simulation Monitors
and Constraints

for Formal
Analysis

property wait_after_abort;
@(posedge clk) abort_cycle |=> !as[*2];

endproperty
assert property (wait_after_abort);

as
ds
rdy

abort

60

SystemVerilog Enhanced Scheduling

Next
Time Slot

Previous
Time Slot

Read-Only

Active

Inactive

NBA

61

SystemVerilog Enhanced Scheduling

Next
Time Slot

Previous
Time Slot

Postponed

Verilog
2001

SystemVerilog
3.1

Active

Inactive

NBA

Reactive

Observe

Preponed

Evaluate
Assertions

Execute
TestBench

Sample
Stable
Values

62

Agenda
• Introduction
• SystemVerilog Design Features
• SystemVerilog Assertions
• SystemVerilog Verification Features
• Using SystemVerilog and VHDL Together

63

SystemVerilog With VHDL
• Verilog-VHDL Interface limited to net/vector

types
• VHDL records and arrays packed into bit

vectors
• SystemVerilog supports higher-level data

types
• Synthesizable types are synthesizable across

the interface

EnumEnum

ArrayArray
StructRecord

SystemVerilog VHDL

Multi-D ArrayMulti-D Array

64

Pure VHDL Simulation Flow

VHDL RTL VHDL

Design Testbench

• Coherent environment for design and verification
• Limited testbench capabilities in VHDL “promote” a

directed test based verification methodology
• Lack of constrained random / assertion / coverage

low “bug-finding effectiveness”

+ Single language (VHDL) for
design and testbench

- No constrained
random TB

- No temporal
assertions

- No functional
coverage

Performance

Effectiveness

65

Performance

Effectiveness

SystemVerilog is Evolutionary for
VHDL and Verilog Users

• Increases productivity for
Design and Verification
• Concise coding constructs
• Rich assertions
• Complete testbench

– Constrained Random
Data

– Functional Coverage

Design

VHDL / Verilog
(Behavioral

RTL)

HVL

C/C++

VHPI / FLI

Testbench
SystemVerilog

VHDL/ Verilog

Design

 Assertions

Testbench

SystemVerilog

 Assertions
Testbench

Design

66

The Importance of a Single
Language

Reuse of Syntax/Concepts
• Sampling for assertions and clocking domains
• Method syntax
• Queues use common concat/array operations
• Constraints in classes and procedural code

Knowledge of
Other Language
Features
• Testbench and
Assertions
• Interfaces and
Classes
• Sequences
and Events

Unified Scheduling
• Basic Verilog
won’t work
• Ensures Pre/Post-
Synth Consistency
• Enables
Performance
Optimizations

67

SystemVerilog Benefits for VHDL Users
• Many VHDL modeling features are in SystemVerilog

• Don’t have to give up high-level data types
• Some features (enums) extended beyond VHDL

capabilities
• Mixed-HDL environments are a reality

• Higher-level data types supported across boundary
• Continue to use VHDL legacy blocks
• Easier to adopt SystemVerilog incrementally

• Industry-Standard Verification Language works
with VHDL designs

• Constrained random data generation
• Object-oriented
• Assertions

• SystemVerilog supports Design for Verification
• Interfaces and assertions capture design intent
• Efficient and intuitive interactions between testbench and

assertions

68

Unified Unified
LanguageLanguage

Unified Unified
MethodologyMethodology Axes of Verification Productivity

Evolution of Verification Productivity

Unified Unified
PlatformsPlatformsCoverageCoverage

AssertionsAssertions

FormalFormal
TestbenchTestbench

C++C++

MixedMixed--HDLHDL

