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Overview
• Data-Level Parallelism (DLP) vs. Thread-Level 

Parallelism (TLP)
– In DLP, parallelism arises from independent execution of the 

same code on a large number of data objects

– In TLP, parallelism arises from independent execution of 
different threads of control

• Hypothesis: many applications that use massively 
parallel machines exploit data parallelism

– Common in the Scientific Computing domain

– Also, multimedia (image and audio) processing

– And more recently data mining and AI
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Interlude: Flynn’s Taxonomy (1966)

• Michael Flynn classified parallelism across two dimensions: Data 
and Control

– Single Instruction, Single Data (SISD)
• Our uniprocessors

– Single Instruction, Multiple Data (SIMD)
• Same inst. executed by different “processors” using different data
• Basis of DLP architectures: vector, SIMD extensions, GPUs

– Multiple Instruction, Multiple Data (MIMD)
• TLP architectures: SMPs and multi-cores

– Multiple Instruction, Single Data (MISD)
• Just for the sake of completeness, no real architecture

• DLP originally associated w/ SIMD; now SIMT is also common
– SIMT: Single Instruction Multiple Threads
– SIMT found in NVIDIA GPUs
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Examples of Data-Parallel Code
• SAXPY: Y = a*X + Y

for (i = 0; i < n; i++)

Y[i] = a * X[i] + Y[i]

• Matrix-Vector Multiplication: Am×1 = Mm×n × Vn×1

for (i = 0; i < m; i++)

for (j = 0; j < n; j++)

A[i] += M[i][j] * V[j]
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Overview
• Many incarnations of DLP architectures over decades

– Vector processors
• Cray processors: Cray-1, Cray-2, …, Cray X1

– SIMD extensions
• Intel MMX, SSE* and AVX* extensions

– Modern GPUs
• NVIDIA, AMD, Qualcomm, …

• General Idea: use statically-known DLP to achieve 
higher throughput

– instead of discovering parallelism in hardware as
OOO super-scalars do

– Focus on throughput rather than latency
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Vector Processors
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Vector Processors
• Basic idea:

– Read sets of data elements into “vector registers”

– Operate on those registers

– Disperse the results back into memory

• Registers are controlled by compiler
– Used to hide memory latency

– Leverage memory bandwidth

• Hide memory latency by:
– Issuing all memory accesses for a vector load/store together

– Using chaining (later) to compute on earlier vector elements 
while waiting for later elements to be loaded



Vector Processors

 Scalar processors operate on single numbers (scalars)

 Vector processors operate on linear sequences of 
numbers (vectors)
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Components of a Vector Processor

• A scalar processor (e.g. a MIPS processor)
– Scalar register file (32 registers)

– Scalar functional units (arithmetic, load/store, etc)

• A vector register file (a 2D register array)
– Each register is an array of elements

– E.g. 32 registers with 32 64-bit elements per register

– MVL = maximum vector length = max # of elements per register

• A set of vector functional units
– Integer, FP, load/store, etc

– Some times vector and scalar units are combined (share ALUs)
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Simple Vector Processor Organization
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Basic Vector ISA

+ regular scalar instructions

Instruction Operation Comments

vadd.vv v1, v2, v3 v1=v2+v3 vector + vector

vadd.sv v1, r0, v2 v1=r0+v2 scalar + vector

vmul.vv v1, v2, v3 v1=v2*v3 vector x vector

vmul.sv v1, r0, v2 v1=r0*v2 scalar x vector

vld v1, r1 v1=m[r1...r1+63] load, stride=1

vlds v1, r1, r2 v1=m[r1…r1+63*r2] load, stride=r2

vldx v1, r1, v2 v1=m[r1+v2[i], i=0..63] indexed load (gather)

vst v1, r1 m[r1...r1+63]=v1 store, stride=1

vsts v1, r1, r2 v1=m[r1...r1+63*r2] store, stride=r2

vstx v1, r1, v2 v1=m[r1+v2[i], i=0..63] indexed store (scatter)
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SAXPY in Vector ISA vs. Scalar ISA
• For now, assume array length = vector length (say 32)

fld f0, a # load scalar a

vld v0, x5 # load vector X

Vmul v1, f0, v0 # vector-scalar multiply

vld v2, x6 # load vector Y

vadd v3, v1, v2 # vector-vector add

vst v3, x6 # store the sum in Y

fld f0, a # load scalar a

addi x28, x5, 4*32 # last addr to load

loop: fld f1, 0(x5) # load x[i]

fmul f1, f1, f0 # a * X[i]

fld f2, 0(x6) # Load Y[i]

fadd f2, f2, f1 # a * X[i] + Y[i]

fst f2, 0(x6) # store Y[i]

addi x5, x5, 4 # increment X index

addi x6, x6, 4 # increment Y index

bne x28, x5, loop # check if done

Vector

Scalar
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Vector Length (VL)
• Usually, array length not equal to (or a multiple of) 

maximum vector length (MVL)

• Can strip-mine the loop to make inner loops a multiple of 
MVL, and use an explicit VL register for the remaining part

for (j = 0; j < n; j += mvl)

for (i = j; i < mvl; i++)

Y[i] = a * X[i] + Y[i];

for (; i < n; i++) 

Y[i] = a * X[i] + Y[i];

Strip-mined

C code

fld f0, a # load scalar a

Loop: setvl x1 # set VL = min(n, mvl)

vld v0, x5 # load vector X

Vmul v1, f0, v0 # vector-scalar multiply

vld v2, x6 # load vector Y

vadd v3, v1, v2 # vector-vector add

vst v3, x6 # store the sum in Y

// decrement x1 by VL

// increment x5, x6 by VL

// jump to Loop if x1 != 0

Strip-mined

Vector code
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Advantages of Vector ISA
• Compact: single instruction defines N operations

– Amortizes the cost of instruction fetch/decode/issue
– Also reduces the frequency of branches

• Parallel: N operations are (data) parallel
– No dependencies  
– No need for complex hardware to detect parallelism
– Can execute in parallel assuming N parallel functional units

• Expressive: memory operations describe patterns
– Continuous or regular memory access pattern
– Can prefetch or accelerate using wide/multi-banked memory
– Can amortize high latency for 1st element over large sequential 

pattern
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Optimization 1: Chaining
• Consider the following code:

• Chaining:
– v1 is not a single entity but a group of individual elements
– vmul can start working on individual elements of v1 as they become ready
– Same for v6 and vadd

• Can allow any vector operation to chain to any other active vector operation
– By having register files with many read/write ports

vld v3, r4 

vmul.sv v6, r5, v3 # very long RAW hazard

vadd.vv v4, v6, v5 # very long RAW hazard

vadd

vmul vadd

vmul

Unchained

Execution

Chained

Execution



Optimization 2: Multiple Lanes

 Modular, scalable design 

 Elements for each vector register interleaved across the lanes

 Each lane receives identical control

 Multiple element operations executed per cycle

 No need for inter-lane communication for most vector instructions

To/From Memory System

Pipelined

Datapath

Functional

Unit

Lane

Vector RF

Partition
Elements Elements Elements Elements
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Chaining & Multi-lane Example

VL=16, 4 lanes,

2 FUs, 1 LSU

chaining -> 12 
ops/cycle

Just 1 new

instruction

issued per cycle

!!!! 

vld

vmul.vv

vadd.vv

addu

vld

vmul.vv

vadd.vv

addu

LSU FU0 FU1Scalar

Time

Element Operations: Instr. Issue:
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Optimization 3: Vector Predicates
• Suppose you want to vectorize this:

• Solution: vector conditional execution (predication)
– Add vector flag registers with single-bit elements (masks)

– Use a vector compare to set the a flag register

– Use flag register as mask control for the vector sub
• Do subtraction only for elements w/ corresponding flag set

for (i=0; i<N; i++)

if (A[i]!= B[i]) A[i] -= B[i];

vld v1, x5 # load A

vld v2, x6 # load B

vcmp.neq.vv m0, v1, v2 # vector compare

vsub.vv v1, v1, v2, m0  # conditional vsub

vst v1, x5, m0 # store A
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Strided Vector Load/Stores
• Consider the following matrix-matrix multiplication:

• Can vectorize multiplication of rows of B with columns of D
– D’s elements have non-unit stride

– Use normal vld for B and vlds (strided vector load) for D

for (i = 0; i < 100; i=i+1)

for (j = 0; j < 100; j=j+1)

A[i][j] = 0.0;

for (k = 0; k < 100; k=k+1)

A[i][j] = A[i][j] + B[i][k] * D[k][j];



Spring 2018 :: CSE 502

Indexed Vector Load/Stores
• A.k.a, gather (indexed load) and scatter (indexed store)

• Consider the following sparse vector-vector addition:

• Can vectorize the addition operation?
– Yes, but need a way to vector load/store to random addresses
– Use indexed vector load/stores

for (i = 0; i < n; i=i+1)

A[K[i]] = A[K[i]] + C[M[i]];

vld v0, x7 # load K[]

vldx v1, x5, v0 # load A[K[]]

vld v2, x28 # load M[]

vldx v3, x6, v2 # load C[M[]]

vadd v1, v1, v3 # add 

vstx v1, x5, v0 # store A[K[]]
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Memory System Design
• DLP workload are very memory intensive

– Because of large data sets
– Caches and compiler optimizations can help but not enough

• Supporting strided and indexed vector loads/stores can generate 
many parallel memory accesses

– How to support efficiently?

• Banking: spread memory across many banks w/ fine interleaving
– Can access all banks in parallel if no bank conflict; otherwise will need to 

stall (structural hazard)

• Example:
– 32 processors, each generating 4 loads and 2 stores/cycle
– Processor cycle time is 2.25 ns, Memory cycle time is 15 ns
– How many memory banks needed?
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SIMD ISA Extensions
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SIMD Extensions (1)
• SIMD extensions are a smaller version of vector processors 

– Integrated with ordinary scalar processors
– E.g., MMX, SSE and AVX extensions for x86

• The original idea was to use a functional unit built for a 
single large operation for many parallel smaller ops

– E.g., using one 64-bit adder to do eight 8-bit addition by 
partitioning the carry chain

• Initially, they were not meant to focus on memory-intensive 
data-parallel applications, but rather digital signal-
processing (DSP) applications

– DSP apps are more compute-bound than memory-bound
– DSP apps usually use smaller data types

Hiding memory-latency was not originally an issue!
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SIMD Extensions (2)
• SIMD extensions were slow to add vector ideas such as 

vector length, strided and indexed load/stores, 
predicated execution, etc.

• Things are changing now because of Big Data 
applications that are memory bound

• E.g., AVX-512 (available in recent Intel processors)
– Has vectors of 512 bits (8 64-bit elements or 64 8-bit 

elements)

– Supports all of the above vector load/stores and other 
features 
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SIMD Example: Intel Xeon Phi

• Multi-core chip with Pentium-based SIMD processors
– Targeting HPC market (Goal: high GFLOPS, GFLOPS/Watt)

• 4 hardware threads + wide SIMD units
– Vector ISA: 32 vector registers (512b), 8 mask registers, scatter/gather

• In-order, short pipeline
– Why in-order?
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Core

L2

Core

L2

Core

L2

Core

L2

TD TD TD TD

Core

L2

Core

L2
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TDTDTDTD

GDDR MC
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512b SIMD
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GPUs
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Graphics Processing Unit (GPU)
• An architecture for compute-intensive, highly data-

parallel computation
– Exactly what graphics rendering is about

– Transistors devoted to data processing rather than 
caching and flow control

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU
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Data Parallelism in GPUs
• GPUs take advantage of massive DLP to provide very high 

FLOP rates
– More than 1 Tera DP FLOP in NVIDIA GK110

• SIMT execution model
– Single instruction multiple threads
– Trying to distinguish itself from both “vectors” and “SIMD”
– A key difference: better support for conditional control flow

• Program it with CUDA or OpenCL (among other things)
– Extensions to C
– Perform a “shader task” (a snippet of scalar computation) over 

many elements
– Internally, GPU uses scatter/gather and vector-mask-like 

operations



Spring 2018 :: CSE 502

CUDA
• Extension of the C language

• Function types
– Device code (kernel) : run on the GPU

– Host code: run on the CPU and calls device programs

• Extensions / API
– Function type : __global__, __device__, __host__

– Variable type : __shared__, __constant__
• Affects allocation of variable in different types of memory

– cudaMalloc(), cudaFree(), cudaMemcpy(),…

– __syncthread(), atomicAdd(),…



Spring 2018 :: CSE 502

CUDA Software Model
• A kernel is executed as a grid of 

thread blocks
– Per-thread register and local-

memory space
– Per-block shared-memory space
– Shared global memory space

• Blocks are considered
cooperating arrays of threads

– Share memory
– Can synchronize

• Blocks within a grid are 
independent

– can execute concurrently
– No cooperation across blocks
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SAXPY in CUDA

• Each CUDA thread operates on one data element
– That’s the reason behind MT in SIMT

• Hardware tries to execute these threads in lock-step as long 
as they all execute the same instruction together

– That’s the SI part in SIMT

• We’ll see how shortly

__global__ void saxpy(int n, float a, float *x, float *y) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}

// Perform SAXPY on with 512 threads/block

int block_cnt = (N + 511) / 512;

saxpy<<<block_cnt,512>>>(N, 2.0, x, y);

Device

Code

Host

Code
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Compiling CUDA
• nvcc

– Compiler driver

– Invoke cudacc, g++, cl

• PTX
– Parallel Thread eXecution

NVCC

C/C++ CUDA

Application

PTX to Target

Compiler

G80 … GPU 

Target code

PTX Code

CPU Code

ld.global.v4.f32  {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32           $f1, $f5, $f3, $f1;

Courtesy NVIDIA
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CUDA Hardware Model
• Follows the software model closely

• Each thread block executed by a single multiprocessor
– Synchronized using shared memory

• Many thread blocks assigned to a single multiprocessor
– Executed concurrently in a FGMT fashion

– Keep GPU as busy as possible 

• Running many threads in parallel can hide DRAM 
memory latency

– Global memory access can be several hundred cycles
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Example: NVIDIA Kepler GK110

• 15 SMX processors, shared L2, 6 memory controllers
– 1 TFLOP dual-precision FP

• HW thread scheduling
– No OS involvement in scheduling

Source: NVIDIA’s Next Generation CUDA

Compute Architecture: Kepler GK110
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Streaming Multiprocessor (SMX)

• Capabilities
– 64K registers

– 192 simple cores
• Int and SP FPU

– 64 DP FPUs

– 32 LD/ST Units (LSU)

– 32 Special Function Units 
(FSU)

• Warp Scheduling
– 4 independent warp 

schedulers

– 2 inst dispatch per warp Source: NVIDIA’s Next Generation CUDA Compute 

Architecture: Kepler GK110
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Latency Hiding with “Thread Warps”

• Warp: A set of threads that 
execute the same 
instruction (on different 
data elements)

• Fine-grained 
multithreading

– One instruction per thread in 
pipeline at a time (No branch 
prediction)

– Interleave warp execution to 
hide latencies

• Register values of all 
threads stay in register file

– No OS context switching

Decode

R
F

R
F

R
F

A
L U

A
L U

A
L U

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt
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Warp-based SIMT vs. Traditional SIMD

• Traditional SIMD consists of a single thread 
– SIMD Programming model (no threads)  SW needs to know 

vector length

– ISA contains vector/SIMD instructions

• Warp-based SIMT consists of multiple scalar threads
– Same instruction executed by all threads

• Does not have to be lock step

– Each thread can be treated individually
• i.e., placed in a different warp  programming model not SIMD

• SW does not need to know vector length

• Enables memory and branch latency tolerance

– ISA is scalar  vector instructions formed dynamically
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Warp Scheduling in Kepler
• 64 warps per SMX

– 32 threads per warp
– 64K registers/SMX
– Up to 255 registers per thread

• Scheduling 
– 4 schedulers select 1 warp per cycle each
– 2 independent instructions issued per 

warp
– Total bandwidth = 4 * 2 * 32 = 256 

ops/cycle

• Register Scoreboarding
– To track ready instructions for long 

latency ops

• Compiler handles scheduling for fixed-
latency operations

– Binary incompatibility? 

Source: NVIDIA’s Next Generation CUDA Compute 

Architecture: Kepler GK110
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Memory Hierarchy
• Each SMX has 64KB of memory

– Split between shared mem and L1 cache
• 16/48, 32/32, 48/16

– 256B per access

• 48KB read-only data cache
– Compiler controlled

• 1.5MB shared L2

• Support for atomic operations
– atomicCAS, atomicADD, …

• Throughput-oriented main memory
– Memory coalescing
– Graphics DDR (GDDR)

• Very wide channels: 256 bit vs. 64 bit for DDR
• Lower clock rate than  DDR

Source: NVIDIA’s Next Generation CUDA 

Compute Architecture: Kepler GK110


