
Spring 2018 :: CSE 502

Data-Parallel
Architectures

Nima Honarmand

Spring 2018 :: CSE 502

Overview
• Data-Level Parallelism (DLP) vs. Thread-Level

Parallelism (TLP)
– In DLP, parallelism arises from independent execution of the

same code on a large number of data objects

– In TLP, parallelism arises from independent execution of
different threads of control

• Hypothesis: many applications that use massively
parallel machines exploit data parallelism

– Common in the Scientific Computing domain

– Also, multimedia (image and audio) processing

– And more recently data mining and AI

Spring 2018 :: CSE 502

Interlude: Flynn’s Taxonomy (1966)

• Michael Flynn classified parallelism across two dimensions: Data
and Control

– Single Instruction, Single Data (SISD)
• Our uniprocessors

– Single Instruction, Multiple Data (SIMD)
• Same inst. executed by different “processors” using different data
• Basis of DLP architectures: vector, SIMD extensions, GPUs

– Multiple Instruction, Multiple Data (MIMD)
• TLP architectures: SMPs and multi-cores

– Multiple Instruction, Single Data (MISD)
• Just for the sake of completeness, no real architecture

• DLP originally associated w/ SIMD; now SIMT is also common
– SIMT: Single Instruction Multiple Threads
– SIMT found in NVIDIA GPUs

Spring 2018 :: CSE 502

Examples of Data-Parallel Code
• SAXPY: Y = a*X + Y

for (i = 0; i < n; i++)

Y[i] = a * X[i] + Y[i]

• Matrix-Vector Multiplication: Am×1 = Mm×n × Vn×1

for (i = 0; i < m; i++)

for (j = 0; j < n; j++)

A[i] += M[i][j] * V[j]

Spring 2018 :: CSE 502

Overview
• Many incarnations of DLP architectures over decades

– Vector processors
• Cray processors: Cray-1, Cray-2, …, Cray X1

– SIMD extensions
• Intel MMX, SSE* and AVX* extensions

– Modern GPUs
• NVIDIA, AMD, Qualcomm, …

• General Idea: use statically-known DLP to achieve
higher throughput

– instead of discovering parallelism in hardware as
OOO super-scalars do

– Focus on throughput rather than latency

Spring 2018 :: CSE 502

Vector Processors

Spring 2018 :: CSE 502

Vector Processors
• Basic idea:

– Read sets of data elements into “vector registers”

– Operate on those registers

– Disperse the results back into memory

• Registers are controlled by compiler
– Used to hide memory latency

– Leverage memory bandwidth

• Hide memory latency by:
– Issuing all memory accesses for a vector load/store together

– Using chaining (later) to compute on earlier vector elements
while waiting for later elements to be loaded

Vector Processors

 Scalar processors operate on single numbers (scalars)

 Vector processors operate on linear sequences of
numbers (vectors)

+

r1 r2

r3

add r3, r1, r2

SCALAR

(1 operation)

v1 v2

v3

+

vector

length

vadd.vv v3, v1, v2

VECTOR

(N operations)

8

6.888 Spring 2013 - Sanchez and Emer - L14

Spring 2018 :: CSE 502

Components of a Vector Processor

• A scalar processor (e.g. a MIPS processor)
– Scalar register file (32 registers)

– Scalar functional units (arithmetic, load/store, etc)

• A vector register file (a 2D register array)
– Each register is an array of elements

– E.g. 32 registers with 32 64-bit elements per register

– MVL = maximum vector length = max # of elements per register

• A set of vector functional units
– Integer, FP, load/store, etc

– Some times vector and scalar units are combined (share ALUs)

Spring 2018 :: CSE 502

Simple Vector Processor Organization

Spring 2018 :: CSE 502

Basic Vector ISA

+ regular scalar instructions

Instruction Operation Comments

vadd.vv v1, v2, v3 v1=v2+v3 vector + vector

vadd.sv v1, r0, v2 v1=r0+v2 scalar + vector

vmul.vv v1, v2, v3 v1=v2*v3 vector x vector

vmul.sv v1, r0, v2 v1=r0*v2 scalar x vector

vld v1, r1 v1=m[r1...r1+63] load, stride=1

vlds v1, r1, r2 v1=m[r1…r1+63*r2] load, stride=r2

vldx v1, r1, v2 v1=m[r1+v2[i], i=0..63] indexed load (gather)

vst v1, r1 m[r1...r1+63]=v1 store, stride=1

vsts v1, r1, r2 v1=m[r1...r1+63*r2] store, stride=r2

vstx v1, r1, v2 v1=m[r1+v2[i], i=0..63] indexed store (scatter)

Spring 2018 :: CSE 502

SAXPY in Vector ISA vs. Scalar ISA
• For now, assume array length = vector length (say 32)

fld f0, a # load scalar a

vld v0, x5 # load vector X

Vmul v1, f0, v0 # vector-scalar multiply

vld v2, x6 # load vector Y

vadd v3, v1, v2 # vector-vector add

vst v3, x6 # store the sum in Y

fld f0, a # load scalar a

addi x28, x5, 4*32 # last addr to load

loop: fld f1, 0(x5) # load x[i]

fmul f1, f1, f0 # a * X[i]

fld f2, 0(x6) # Load Y[i]

fadd f2, f2, f1 # a * X[i] + Y[i]

fst f2, 0(x6) # store Y[i]

addi x5, x5, 4 # increment X index

addi x6, x6, 4 # increment Y index

bne x28, x5, loop # check if done

Vector

Scalar

Spring 2018 :: CSE 502

Vector Length (VL)
• Usually, array length not equal to (or a multiple of)

maximum vector length (MVL)

• Can strip-mine the loop to make inner loops a multiple of
MVL, and use an explicit VL register for the remaining part

for (j = 0; j < n; j += mvl)

for (i = j; i < mvl; i++)

Y[i] = a * X[i] + Y[i];

for (; i < n; i++)

Y[i] = a * X[i] + Y[i];

Strip-mined

C code

fld f0, a # load scalar a

Loop: setvl x1 # set VL = min(n, mvl)

vld v0, x5 # load vector X

Vmul v1, f0, v0 # vector-scalar multiply

vld v2, x6 # load vector Y

vadd v3, v1, v2 # vector-vector add

vst v3, x6 # store the sum in Y

// decrement x1 by VL

// increment x5, x6 by VL

// jump to Loop if x1 != 0

Strip-mined

Vector code

Spring 2018 :: CSE 502

Advantages of Vector ISA
• Compact: single instruction defines N operations

– Amortizes the cost of instruction fetch/decode/issue
– Also reduces the frequency of branches

• Parallel: N operations are (data) parallel
– No dependencies
– No need for complex hardware to detect parallelism
– Can execute in parallel assuming N parallel functional units

• Expressive: memory operations describe patterns
– Continuous or regular memory access pattern
– Can prefetch or accelerate using wide/multi-banked memory
– Can amortize high latency for 1st element over large sequential

pattern

Spring 2018 :: CSE 502

Optimization 1: Chaining
• Consider the following code:

• Chaining:
– v1 is not a single entity but a group of individual elements
– vmul can start working on individual elements of v1 as they become ready
– Same for v6 and vadd

• Can allow any vector operation to chain to any other active vector operation
– By having register files with many read/write ports

vld v3, r4

vmul.sv v6, r5, v3 # very long RAW hazard

vadd.vv v4, v6, v5 # very long RAW hazard

vadd

vmul vadd

vmul

Unchained

Execution

Chained

Execution

Optimization 2: Multiple Lanes

 Modular, scalable design

 Elements for each vector register interleaved across the lanes

 Each lane receives identical control

 Multiple element operations executed per cycle

 No need for inter-lane communication for most vector instructions

To/From Memory System

Pipelined

Datapath

Functional

Unit

Lane

Vector RF

Partition
Elements Elements Elements Elements

19

6.888 Spring 2013 - Sanchez and Emer - L14

Chaining & Multi-lane Example

VL=16, 4 lanes,

2 FUs, 1 LSU

chaining -> 12
ops/cycle

Just 1 new

instruction

issued per cycle

!!!!

vld

vmul.vv

vadd.vv

addu

vld

vmul.vv

vadd.vv

addu

LSU FU0 FU1Scalar

Time

Element Operations: Instr. Issue:

20

6.888 Spring 2013 - Sanchez and Emer - L14

Spring 2018 :: CSE 502

Optimization 3: Vector Predicates
• Suppose you want to vectorize this:

• Solution: vector conditional execution (predication)
– Add vector flag registers with single-bit elements (masks)

– Use a vector compare to set the a flag register

– Use flag register as mask control for the vector sub
• Do subtraction only for elements w/ corresponding flag set

for (i=0; i<N; i++)

if (A[i]!= B[i]) A[i] -= B[i];

vld v1, x5 # load A

vld v2, x6 # load B

vcmp.neq.vv m0, v1, v2 # vector compare

vsub.vv v1, v1, v2, m0 # conditional vsub

vst v1, x5, m0 # store A

Spring 2018 :: CSE 502

Strided Vector Load/Stores
• Consider the following matrix-matrix multiplication:

• Can vectorize multiplication of rows of B with columns of D
– D’s elements have non-unit stride

– Use normal vld for B and vlds (strided vector load) for D

for (i = 0; i < 100; i=i+1)

for (j = 0; j < 100; j=j+1)

A[i][j] = 0.0;

for (k = 0; k < 100; k=k+1)

A[i][j] = A[i][j] + B[i][k] * D[k][j];

Spring 2018 :: CSE 502

Indexed Vector Load/Stores
• A.k.a, gather (indexed load) and scatter (indexed store)

• Consider the following sparse vector-vector addition:

• Can vectorize the addition operation?
– Yes, but need a way to vector load/store to random addresses
– Use indexed vector load/stores

for (i = 0; i < n; i=i+1)

A[K[i]] = A[K[i]] + C[M[i]];

vld v0, x7 # load K[]

vldx v1, x5, v0 # load A[K[]]

vld v2, x28 # load M[]

vldx v3, x6, v2 # load C[M[]]

vadd v1, v1, v3 # add

vstx v1, x5, v0 # store A[K[]]

Spring 2018 :: CSE 502

Memory System Design
• DLP workload are very memory intensive

– Because of large data sets
– Caches and compiler optimizations can help but not enough

• Supporting strided and indexed vector loads/stores can generate
many parallel memory accesses

– How to support efficiently?

• Banking: spread memory across many banks w/ fine interleaving
– Can access all banks in parallel if no bank conflict; otherwise will need to

stall (structural hazard)

• Example:
– 32 processors, each generating 4 loads and 2 stores/cycle
– Processor cycle time is 2.25 ns, Memory cycle time is 15 ns
– How many memory banks needed?

Spring 2018 :: CSE 502

SIMD ISA Extensions

Spring 2018 :: CSE 502

SIMD Extensions (1)
• SIMD extensions are a smaller version of vector processors

– Integrated with ordinary scalar processors
– E.g., MMX, SSE and AVX extensions for x86

• The original idea was to use a functional unit built for a
single large operation for many parallel smaller ops

– E.g., using one 64-bit adder to do eight 8-bit addition by
partitioning the carry chain

• Initially, they were not meant to focus on memory-intensive
data-parallel applications, but rather digital signal-
processing (DSP) applications

– DSP apps are more compute-bound than memory-bound
– DSP apps usually use smaller data types

Hiding memory-latency was not originally an issue!

Spring 2018 :: CSE 502

SIMD Extensions (2)
• SIMD extensions were slow to add vector ideas such as

vector length, strided and indexed load/stores,
predicated execution, etc.

• Things are changing now because of Big Data
applications that are memory bound

• E.g., AVX-512 (available in recent Intel processors)
– Has vectors of 512 bits (8 64-bit elements or 64 8-bit

elements)

– Supports all of the above vector load/stores and other
features

Spring 2018 :: CSE 502

SIMD Example: Intel Xeon Phi

• Multi-core chip with Pentium-based SIMD processors
– Targeting HPC market (Goal: high GFLOPS, GFLOPS/Watt)

• 4 hardware threads + wide SIMD units
– Vector ISA: 32 vector registers (512b), 8 mask registers, scatter/gather

• In-order, short pipeline
– Why in-order?

PCIe
Client
Logic

Core

L2

Core

L2

Core

L2

Core

L2

TD TD TD TD

Core

L2

Core

L2

Core

L2

Core

L2

TDTDTDTD

GDDR MC

GDDR MC

GDDR MC

GDDR MC

L1 TLB
and 32KB

Code Cache

T0 IP

4 Threads

In-Order Decode uCode

Pipe 0

X87 RF Scalar RF

X87 ALU 0 ALU 1

VPU RF

VPU

512b SIMD

Pipe 1

T1 IP

T2 IP

T3 IP

L1 TLB and 32KB Data Cache

Spring 2018 :: CSE 502

GPUs

Spring 2018 :: CSE 502

Graphics Processing Unit (GPU)
• An architecture for compute-intensive, highly data-

parallel computation
– Exactly what graphics rendering is about

– Transistors devoted to data processing rather than
caching and flow control

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

Spring 2018 :: CSE 502

Data Parallelism in GPUs
• GPUs take advantage of massive DLP to provide very high

FLOP rates
– More than 1 Tera DP FLOP in NVIDIA GK110

• SIMT execution model
– Single instruction multiple threads
– Trying to distinguish itself from both “vectors” and “SIMD”
– A key difference: better support for conditional control flow

• Program it with CUDA or OpenCL (among other things)
– Extensions to C
– Perform a “shader task” (a snippet of scalar computation) over

many elements
– Internally, GPU uses scatter/gather and vector-mask-like

operations

Spring 2018 :: CSE 502

CUDA
• Extension of the C language

• Function types
– Device code (kernel) : run on the GPU

– Host code: run on the CPU and calls device programs

• Extensions / API
– Function type : __global__, __device__, __host__

– Variable type : __shared__, __constant__
• Affects allocation of variable in different types of memory

– cudaMalloc(), cudaFree(), cudaMemcpy(),…

– __syncthread(), atomicAdd(),…

Spring 2018 :: CSE 502

CUDA Software Model
• A kernel is executed as a grid of

thread blocks
– Per-thread register and local-

memory space
– Per-block shared-memory space
– Shared global memory space

• Blocks are considered
cooperating arrays of threads

– Share memory
– Can synchronize

• Blocks within a grid are
independent

– can execute concurrently
– No cooperation across blocks

Spring 2018 :: CSE 502

SAXPY in CUDA

• Each CUDA thread operates on one data element
– That’s the reason behind MT in SIMT

• Hardware tries to execute these threads in lock-step as long
as they all execute the same instruction together

– That’s the SI part in SIMT

• We’ll see how shortly

__global__ void saxpy(int n, float a, float *x, float *y) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}

// Perform SAXPY on with 512 threads/block

int block_cnt = (N + 511) / 512;

saxpy<<<block_cnt,512>>>(N, 2.0, x, y);

Device

Code

Host

Code

Spring 2018 :: CSE 502

Spring 2018 :: CSE 502

Compiling CUDA
• nvcc

– Compiler driver

– Invoke cudacc, g++, cl

• PTX
– Parallel Thread eXecution

NVCC

C/C++ CUDA

Application

PTX to Target

Compiler

G80 … GPU

Target code

PTX Code

CPU Code

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

Courtesy NVIDIA

Spring 2018 :: CSE 502

CUDA Hardware Model
• Follows the software model closely

• Each thread block executed by a single multiprocessor
– Synchronized using shared memory

• Many thread blocks assigned to a single multiprocessor
– Executed concurrently in a FGMT fashion

– Keep GPU as busy as possible

• Running many threads in parallel can hide DRAM
memory latency

– Global memory access can be several hundred cycles

Spring 2018 :: CSE 502

Example: NVIDIA Kepler GK110

• 15 SMX processors, shared L2, 6 memory controllers
– 1 TFLOP dual-precision FP

• HW thread scheduling
– No OS involvement in scheduling

Source: NVIDIA’s Next Generation CUDA

Compute Architecture: Kepler GK110

Spring 2018 :: CSE 502

Streaming Multiprocessor (SMX)

• Capabilities
– 64K registers

– 192 simple cores
• Int and SP FPU

– 64 DP FPUs

– 32 LD/ST Units (LSU)

– 32 Special Function Units
(FSU)

• Warp Scheduling
– 4 independent warp

schedulers

– 2 inst dispatch per warp Source: NVIDIA’s Next Generation CUDA Compute

Architecture: Kepler GK110

Spring 2018 :: CSE 502

Latency Hiding with “Thread Warps”

• Warp: A set of threads that
execute the same
instruction (on different
data elements)

• Fine-grained
multithreading

– One instruction per thread in
pipeline at a time (No branch
prediction)

– Interleave warp execution to
hide latencies

• Register values of all
threads stay in register file

– No OS context switching

Decode

R
F

R
F

R
F

A
L U

A
L U

A
L U

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Spring 2018 :: CSE 502

Warp-based SIMT vs. Traditional SIMD

• Traditional SIMD consists of a single thread
– SIMD Programming model (no threads) SW needs to know

vector length

– ISA contains vector/SIMD instructions

• Warp-based SIMT consists of multiple scalar threads
– Same instruction executed by all threads

• Does not have to be lock step

– Each thread can be treated individually
• i.e., placed in a different warp programming model not SIMD

• SW does not need to know vector length

• Enables memory and branch latency tolerance

– ISA is scalar vector instructions formed dynamically

Spring 2018 :: CSE 502

Warp Scheduling in Kepler
• 64 warps per SMX

– 32 threads per warp
– 64K registers/SMX
– Up to 255 registers per thread

• Scheduling
– 4 schedulers select 1 warp per cycle each
– 2 independent instructions issued per

warp
– Total bandwidth = 4 * 2 * 32 = 256

ops/cycle

• Register Scoreboarding
– To track ready instructions for long

latency ops

• Compiler handles scheduling for fixed-
latency operations

– Binary incompatibility?

Source: NVIDIA’s Next Generation CUDA Compute

Architecture: Kepler GK110

Spring 2018 :: CSE 502

Spring 2018 :: CSE 502

Spring 2018 :: CSE 502

Spring 2018 :: CSE 502

Spring 2018 :: CSE 502

Memory Hierarchy
• Each SMX has 64KB of memory

– Split between shared mem and L1 cache
• 16/48, 32/32, 48/16

– 256B per access

• 48KB read-only data cache
– Compiler controlled

• 1.5MB shared L2

• Support for atomic operations
– atomicCAS, atomicADD, …

• Throughput-oriented main memory
– Memory coalescing
– Graphics DDR (GDDR)

• Very wide channels: 256 bit vs. 64 bit for DDR
• Lower clock rate than DDR

Source: NVIDIA’s Next Generation CUDA

Compute Architecture: Kepler GK110

