
APDL: A Processor Description Language For 
Design Space Exploration of Embedded Processors  

N. Honarmand1, H. Sohofi1, M. Abbaspour2 and Z. Navabi1 
1 CAD Laboratory, School of Electrical and Computer Engineering, University of Tehran, Tehran, IRAN 

2 School of Electrical and Computer Engineering, Shahid Beheshti University, Tehran, IRAN 
 

{nima, h_sohofi}@cad.ece.ut.ac.ir, maghsoud@ipm.ir, navabi@ece.neu.edu 
 

Abstract—This paper presents Anahita Processor Description 
Language (APDL) for generation of retargetable processor de-
sign tool sets. The emphasis is on the applicability of the gener-
ated tools in the design space exploration (DSE) phase of de-
signing a new embedded processor. APDL descriptions can be 
used for generating cycle-accurate instruction set simulators, 
assembler/disassembler tools, production quality compilers and 
architecture verification tools. The paper first investigates the 
features required for a language to be useful for DSE and then 
presents APDL constructs along with code samples.  

Index Terms— architecture description languages, application 
specific architectures, retargetable compilation, retargetable 
instruction set simulator. 

1. Introduction 

The proliferation of the embedded electronic systems 
in different branches of technology has fueled rapid 
growth of industry sectors like telecommunication and 
automotive industries, medical instruments, military 
equipment, etc. This effect has created a vast demand for 
electronic systems and resulted in a competitive and fast-
growing market for embedded systems. In this setting, the 
ability to deliver new products within a short period of 
time becomes crucial for remaining in business. 

Also, shrinking feature sizes in IC fabrication technol-
ogy, which for several decades have shown exponential 
growth in transistor count and performance (Moore’s law 
 [1]), has made it possible to put more and more function-
ality on a single silicon die. This, in turn, has caused an 
increase of complexity in modern IC designs, and more 
bugs and more design re-spins before delivering a work-
ing product. At the same time, the increasing mask cost, 
due to newer fabrication technologies, discourages multi-
ple design spins and calls for the less-error-prone design 
techniques. All these challenges encourage the design-
reuse in electronic system design.  

Because of the looser coupling between different sys-
tem components, design reuse is much easier in software-
based systems than hardware systems. One can use the 

same hardware, i.e., the processor, for different designs by 
just reprogramming it. Another equally important problem 
is to incorporate new features in the old designs and to 
introduce improved versions to the market rapidly. This 
necessitates frequent design revisions that are easier to do 
in software. 

To address the performance requirements of the soft-
ware-based design methodology, embedded system de-
signers have turned to use techniques like Instruction Set 
Extensions (ISEs), Digital Signal Processors (DSPs) and 
Application Specific Instruction Processors (ASIPs)  [2]. 
In the former two, the processor designer chooses a gen-
eral purpose architecture and modifies it, i.e., adds some 
application specific features to it, to improve its applica-
bility to the specific problem. In the latter, the designer 
tailors, almost from scratch, a processor’s architecture to a 
class of closely-related applications.  

Before finalizing the processor architecture, the de-
signer needs to measure the figures of merit for different 
alternative architectures. This process is usually referred 
to as Design Space Exploration (DSE). To do this rapidly 
and easily, the designer needs several design automation 
tools, like instruction set simulators (ISS), high level lan-
guage (e.g., C) compilers, hardware generators and archi-
tecture verification tools. 

Naturally, the designer expects to be able to use a sin-
gle description to feed all these different tools, because the 
requirement of providing several models of the design 
arises the issue of consistency between different descrip-
tions and thus is not desirable. Conventionally, languages 
designed for this goal are called Architecture Description 
Languages (ADL). In computer science, the term ADL 
has been used for languages describing architecture of 
both software and hardware systems. In this paper, we use 
this term to refer to languages describing the structural 
and behavioral aspects of instruction set processors. 

This work presents Anahita Processor Description 
Language (APDL) which is the processor description 
formalism behind the Anahita Processor Design Suite, 
currently under development in our research team. APDL 



has been designed as a small yet powerful language to aid 
the DSE during the design of new or modified embedded 
processors, ASIPs and DSPs. 

The rest of the paper is organized as follows: Section  2 
provides the goals driving the current structure of our pro-
posed language. Section  3 surveys some of the previous 
works. Section  4 provides an introduction to the major 
features of the APDL and Section  5 concludes the paper. 

2. Goals and Requirements 

Two different aspects of ASIP designs, namely irregu-
lar hardware structures and the need for aggressive code 
optimization, have greatly impacted the current structure 
of APDL. Irregular data paths, multiple instruction pipe-
lines and split register files are among the features com-
monly found in state-of-the-art DSPs and ASIPs. As a 
result, designing the control logic becomes one of the 
most difficult and error-prone tasks during DSP or ASIP 
design. Also, such irregular structures impose many con-
straints on possible combinations of operations in the in-
struction word of the processor. It is difficult to consider 
all these combinations in a hand coded assembler or code 
generator of a compiler. Since nearly all of these con-
straints arise from resource conflicts between processor 
operations, the information required to detect such con-
straints could easily be extracted from the processor de-
scription, provided that enough information regarding the 
resource requirements of each operation is given in the 
description.  

On the other hand, power-consumption considerations 
in modern embedded applications discourage the embed-
ded processor designers from using many dynamic ILP 
extraction and hazard/resource conflict resolution features 
which are common in today’s high-end desktop or server 
processors  [3]. To compensate for the performance loss 
due to lack of such features, embedded system designers 
should rely on aggressive code optimization by compiler 
or code scheduler. To do this, the code scheduler needs 
detailed information about the behavior of processor op-
erations like when an operation is going to read (write) a 
value from (to) a register or memory. This way, the com-
piler will be able to effectively utilize the delay slots be-
tween producer and consumer operations and increase the 
performance. 

3. Previous Works vs. APDL 

3.1. Previous Works 
Conventionally, ADLs have been classified into three 

major categories: 
• Structural ADLs which focus on the hardware 

components of the processor and their intercon-
nection (MIMOLA  [4]) 

• Behavioral ADLs which mainly focus on the 
functional semantics of the processor instruction 
set (nML  [6] and ISDL  [9]) 

• Mixed ADLs which consider both structure and 
behavior and provide constructs to  express their 

interactions (LISA  [11], EXPRESSION  [12], 
MADL  [13], ArchC  [14] and RADL  [15]) 

MIMOLA  [4] focuses on describing the structure of 
the target processor with HDL-like constructs. In  [5], au-
thors reported techniques to extract the instruction set (IS) 
of the processor by processing this structural description. 
The difficulty of extracting IS information from compli-
cated control unit and data path descriptions makes this an 
unsuitable approach for retargetable code generation. 
Also, the MIMOLA approach will not suit the require-
ments of the DSE phase. During DSE, the designer is 
unlikely to be willing to deal with detailed structural im-
plementation of the processor. Instead, he or she is inter-
ested to begin with a mixture of coarse-grained IS and 
structural decisions and evaluate their impact on perform-
ance parameters of interest. 

nML  [6] is an elegant formalization for describing the 
IS of a processor that has been used by the Belgium-based 
Target company  [7] as the formalization behind its 
CHESS/CHECKERS processor design tool suite. nML pro-
vides constructs for hierarchical and concise operation 
descriptions. nML ignores the temporal resource require-
ments of the operations and thus is not quite suited for the 
DSE phase of ASIP design. Being a behavioral ADL, 
nML ignores detailed temporal resource requirements of 
the processor operations. Also, in nML, designer should 
explicitly enumerate all the operation combinations that 
form valid instructions. This is not a feasible task for large 
ASIP designs.  

ISDL  [9], targeted mainly towards VLIW processors, 
follows the same path as nML although it provides, 
through description of constraints, the ability of invalidat-
ing some combinations of operations in the instruction 
word. The drawback of this method is that the designer 
should manually extract and code the invalid combina-
tions in the description, which is a tedious and error-prone 
task for complex irregular architectures.  

LISA  [11], EXPRESSION  [12] and MADL  [13] are 
examples of mixed-paradigm ADLs. In LISA, the de-
signer should provide a detailed and explicit description of 
behavior and interaction of operations in different stages 
of the processor pipeline. Though a good feature for gen-
eration of cycle accurate instruction set simulators, it is a 
drawback for DSE. During DSE the designer should not 
be engaged in error-prone and time-consuming task of 
modeling the control unit which is by far the most error-
prone and time-consuming task in high level processor 
design.  

EXPRESSION  [12], on the other hand, provides fea-
tures which are more suitable for DSE. Especially, 
through the description of pipeline stages, it provides the 
notation of operation-to-resource mapping. One major 
feature of EXPRESSION which is not found in other 
ADLs is the ability to describe the memory subsystem in 
the same processor description. Despite these, there are 
several major drawbacks in EXPRESSION. First, it lacks 
the hierarchical operation description style that makes its 
descriptions lengthy. Second, the timing model of 
EXPRESSION is bound to the concept of pipeline, and 



temporal behavior and resource requirements of the opera-
tions are indirectly described through instruction-to-
pipeline and pipeline-to-resource mappings. Third, it de-
scribes the semantics of the processor operations by pro-
viding a mapping between the operations of the target 
machine and those of a generic machine. This makes the 
language tool-dependent and results in lengthy descrip-
tions. 

MADL  [13] uses a state-machine based formalism to 
represent the progress of operations in the processor. To 
model the interaction of operations with hardware compo-
nents, it introduces the concept of token managers which 
grant operations the permission to use hardware compo-
nents. In MADL, the behavior of token managers can be 
described in an arbitrary procedural code that makes it 
difficult to automatically extract control information re-
quired by tools like compilers. 

ArchC  [14] is more suited for generation of retarge-
table instruction set simulators and assem-
bler/disassembler tools. The lack of formal semantics and 
using arbitrary C code for behavior description is one of 
the major drawbacks of ArchC that makes it inappropriate 
for code generation and DSE. RADL  [15], a dialect of 
LISA, is intended to be used for modeling complex pipe-
line behavior and bears the same drawbacks as LISA. 

3.2. Comparison with APDL 
To fulfill the requirements depicted in Section  2, we 

devised a new abstraction level for describing the tempo-
ral behavior of the processor operations and their interac-
tion with hardware resources. This description, which we 
refer to as Timed Register Transfer Level (T-RTL), con-
siders the behavior of operations as a timed set of 
read/write/compute events. Each of these events starts at a 
specific time, spans one or more clock cycles and has 
some associated resource requirements. APDL provides 
notations to conveniently specify these features for each 
event. Through T-RTL, APDL provides a unified and 
concise syntax to simultaneously represent different as-
pects of operation behaviors and avoid redundancies or 
limitations which would occur if loosely related semantic 
entities were to be used for this purpose. 

T-RTL helps APDL to be analyzable. By analyzabil-
ity, we mean that different tools, from compilers to ISS 
generators, can readily extract all the provided informa-
tion. This is not the case with many other mixed-paradigm 
languages. For example, in LISA  [11] and RADL  [15], 
the operation behavior in different pipeline stages cannot 
be generally used to extract control information required 
by an optimizing compiler.  

Also, the T-RTL representation can be regarded as a 
generalized form of the pipeline-oriented description style 
of languages like LISA  [11] or EXPRESSION  [12]. The 
implementation style of the processor, whether it is of a 
pipelined or multi-cycle or single cycle from, can be ex-
tracted from the T-RTL operation descriptions. And, if the 
processor has, for example, a pipelined structure, pipeline 
control signals like stall and squash can be automatically 

extracted from the operation descriptions. Section  4.4 
demonstrates the usage of T-RTL in APDL descriptions. 

4. The APDL Language 

This section describes the elements of an APDL de-
scription. To avoid misinterpretation, syntactical con-
structs of APDL are represented in italic font whenever 
necessary. An APDL description consists of eight classes 
of entities: data type declarations, resources, storages, 
attributes, expressions, statements, operations and in-
structions. Operations are the backbone of the descrip-
tions in APDL. Most of the important design data are pro-
vided through operation descriptions. Each operation can 
have attributes describing different aspects of the opera-
tion including its behavior, binary image and assembly 
syntax. Resources are used to express structural properties 
of the design and, through their appearance inside opera-
tion descriptions, convey enough information for detect-
ing possible resource conflicts between different opera-
tions. Storages, a special class of resources, represent non-
volatile storage elements like registers, register files or 
memories. Attributes provide an elegant and uniform syn-
tactical representation to describe different aspects of op-
erations, resources and storages. What follows discusses 
the details of these and other APDL entities. 

4.1. Data Type Declarations 
APDL is a strongly typed language. Every data type in 

the design should be one of the followings: 
• A signed/unsigned integer with a fixed, arbitrary 

bit-width, e.g., int<48>, which is a signed 48-bit 
integer data type; 

• An integer range, e.g., 1 to 31; 
• A floating point data type with fixed, arbitrary bit 

widths for the mantissa and the exponent, e.g., 
float<51,12> which is equivalent to double 
data type of C++ 

• An enumeration type definition, e.g., {false, 
true} for a boolean enumeration 

Figure 1 shows some type declarations from a DLX 
 [3] processor model. 

4.2. Resource Declarations 
Resources are used to express resource requirements 

of the processor operations. In addition, the designer can, 
through resource attributes, provide more information 
regarding different aspects of each resource, if the proc-
essing backend understands these attributes.  

type reg_read_range is 0 to 31; 
type reg_write_range is 1 to 30; 
type reg_write_range_link is 1 to 31; 
type int16 is int<16>; 
type uint16 is unsigned int<16>;  
type int32 is int<32>; 
type uint32 is unsigned int<32>; 
type int26 is int<26>; 

Figure 1. Example type declaratoins in APDL 



In APDL, resources can be multi-dimensional arrays. 
An obvious application of a one dimensional resource 
array could be to describe a pipelined functional unit. An-
other application could be to describe a set of identical 
functional units that can be interchangeably used by an 
operation. Figure 2 shows the declaration of one scalar 
and two array resources. The first one is intended to repre-
sent the integer ALU of a processor. The second one can 
represent a 7-stage pipelined floating point unit and the 
third one might represent a set of 4 identical multipliers in 
the processor. 

4.3. Storage Declarations 
Storages are a special class of resources in APDL. 

They are intended to represent non-volatile storage ele-
ments of the processor like registers, register files and 
memories. Their semantics are the same as those of the 
resources. In addition, they can appear as operands in ex-
pressions. Like resources, storages can be declared as 
multi-dimensional arrays. Unlike many other languages, 
in APDL no data type is associated with storages. They 
represent raw spaces in which one can save the bit pattern 
of any expression, whether it is of an integer or a floating 
point or an enumeration type. 

Figure 2 shows the declaration of one register file and 
two standalone registers from the DLX model. All of 
these registers have a width of 32 bits and the register file 
has a depth of 31. Note that although nominal DLX regis-
ter file has a depth of 32, but since register R0 always 
returns a 0 value upon reading, it is not a real, non-volatile 
storage element and thus the register file has 31 actual 
registers. 

4.4. Expressions and Statements 
Expressions and statements are used to describe the 

behavior of the processor operations. Every statement is 
either a conditional assignment or a reference to a state-
ment attribute of a sub-operation (more on operations and 
different kinds of attributes later). Every conditional as-
signment has two major parts: 1) an optional condition 
expression and 2) a T-RTL assignment to some storage 
element(s). If the condition expression is present, the as-
signment should take place only if the condition expres-
sion evaluates to true. Figure 3 shows an example of an 
assignment statement in the action attribute of opera-
tion add. 

The set of supported expressions in APDL includes 
conditional, relational, shift, mathematical, logical, bit-
concatenation and type conversion expressions. They are 

chosen to support all RTL operations found in common 
hardware description languages. 

There are two kinds of expressions in APDL: re-
sources and simple. Resourced expressions use the T-
RTL description style and can include resource usage 
clauses for any operation or operand while simple expres-
sions are plain RTL ones. 

A resource usage clause contains one or more re-
source usage declarations. Each resource usage declara-
tion has three clauses: 1) the resource to be used, 2) the 
clock cycle at which the computation of the expression 
begins (start time), and 3) the number of clock cycles re-
quired. 

The resource clause can be a completely specified re-
source name like ALU or FP[3], or an incompletely speci-
fied resource name like Mult[?]. The latter form pro-
vides a facility for the designer to indicate that he or she 
wishes to indicate the resource as one of a group of re-
sources without exactly specifying which one. Such in-
complete specifications can be used for design optimiza-
tion similar to the way that don’t cares are used in logic 
optimization. Inclusion of such features increases the use-
fulness of APDL for DSE. 

The start time and the required clock cycles are either 
integer constants or, similar to incomplete resource speci-
fications, might be left unspecified. In the latter case, the 
backend tools can decide their values based on the context 
in which the resource usage clause appears. 

In Fig. 3, the |ALU,EX,1| clause which succeeds the 
+ indicates that this addition takes place at cycle EX 
(which is the second clock cycle), uses the resource 
named ALU, and takes one clock cycle to execute. The fact 
that in DLX, register R0 always returns zero upon reading 
and cannot be used as a non-volatile storage location has 
been addressed in the description of reg_src and 
reg_dst operations through the use of conditional ex-
pressions and integer range types.  

4.5. Operations and Attributes 
Operations are the focal point of any APDL descrip-

tion. Attributes describe different aspects of operations, as 
well as resources and storages.  

APDL provides for hierarchical operation descrip-
tions, i.e., the description of one operation can refer to the 
description of other ones as sub-operations. An APDL 
operation does not necessarily represent a complete (or 
standalone) operation of the target processor. Partial be-
haviors like reading (writing) from (to) memories can be 
described as separate operations. In fact, because basic 
operations like reading from register file might be part of 
many computational operations, one might benefit from 
encapsulating them into separate operations and using 
them as sub-operations of higher-level operations. Figure 
3 shows operation add which uses instances of 
reg_src and reg_dst as sub-operations. 

APDL has two types of operations: single and group. 
A single operation declaration, like reg_src and add in 
Fig. 3, has an argument list whose elements must either be 
an instance of a sub-operation or an instance of a declared 

resource ALU; 
resource FP[7]; 
resource Mult[4]; 
 
storage reg_file[31][32]; 
storage LO[32]; 
storage HI[32]; 

Figure 2. Example resource and storage declarations in APDL 



data type. In the latter case, the argument represents one 
immediate operand of the operation. A group operation 
declaration is a list of operations, like all_ops in Fig. 3. 
Every reference to such a group operation can be substi-
tuted with a reference to each of the grouped sub-
operations. This operation hierarchy declaration has been 
inspired by the nML  [6] language, although there are ma-
jor semantic differences in the usage of  sub-operations. 

There are three types of attributes in APDL: expres-
sion, statement and fixed. The allowed "values" of these 
attributes are expressions, statements and constant values, 
respectively. Also, there are two classes of attributes in 
APDL: inherited and synthesized. Inherited attributes of 
an operation OP should be defined in the declaration of 
those operations of which OP is a sub-operation, while 
synthesized attributes of OP are defined in the declaration 
of OP itself. Figure 3, from the DLX description, shows 
an example of inherited attributes as 
rf_read_port_number which is used in the description 
of reg_src and add operations. The DLX register file 
has two read ports, one for the first register operand and 

the other for the second register operand of register opera-
tions. Declaration of rf_read_port resource declares 
two resources, one for each read port of the register file. 
Since the add operation uses two instances of reg_src as 
sub-operations and these instances should use different 
read ports, the declaration of add uses inherited attribute 
rf_read_port_number to provide its sub-operations 
with the required information. The idea of using attribute 
grammars for ADL design has been previously used in 
languages like nML  [6] and LISA  [11]. However, all of 
these languages only use synthesized attributes, while we 
consider inherited attributes as a powerful aid for writing 
concise descriptions. 

Fixed and expression attributes of one entity can be 
referenced in the definition of expression or statement 
attributes of another entity, while statement attributes can 
only be referenced in the statement attributes of other enti-
ties. In Fig. 3, two predefined operation attributes action 
and value describe the behavior of declared operations. 

 
#define ID 1 
#define EX 2 
#define WB 4 
 
type reg_read_range is 0 to 31; 
type reg_write_range is 1 to 30; 
type int32 is int<32>; 
 
resource rf_read_port[2], rf_write_port, ALU;  
storage reg_file[31][32]; 
fixed inherited operation attribute rf_read_port_number; 
 
operation reg_src ( addr : reg_read_range ) is 
   val := 
      (addr == 0)  
          ? 0 |rf_read_port[rf_read_port_number],ID,1| 
          : reg_file[addr] |rf_read_port[rf_read_port_number],ID,1| ; 
end operation; 
 
operation reg_dst ( addr : reg_write_range ) is 
   val := reg_file[addr] |rf_write_port,WB,1|; 
end operation; 
 
operation add ( s0: reg_src, s1: reg_src, d: reg_dst ) is 
   s0'rf_read_port_number := 0; 
   s1'rf_read_port_number := 1;    
   action := {  
       d'val := int32(s0'val)  +|ALU,EX,1|  int32(s1'val); 
   } 
end operation; 
 
operation sub . . . end operation; 
. 
. 
operation all_ops is {add, sub, . . . } end operation; 
 
instruction ins is {all_ops} end instruction; 

 

Figure 3. Exmaple code demonstrating different aspects of operation declarations in APDL 



4.6. Instructions 
Instructions are top-level constructs which program 

the processor. Every processor operation can be executed 
if it is used inside an instruction. In APDL, the designer 
can define multiple instructions. Each instruction consists 
of one or more operations that should be executed in par-
allel; no inter-locking is allowed inside an instruction to 
resolve possible resource conflicts or data/control hazards. 
There is no restriction on the number of instructions and 
the number of operations in an instruction.  

Figure 3 shows the declaration of the ins instruction. 
Every instance of ins can contain one operation of kind 
all_ops which has been declared as a group operation. 
all_ops is intended to contain all the high-level opera-
tions of the processor. 

Based on the temporal behavior of the operations, 
some combinations of the operations inside an instruction 
might be invalid because of, for example, resource con-
flicts. These restrictions depend on how the instructions 
have been defined, and will be automatically extracted by 
the processing tool. This will relieve the designer of 
manually specifying such constraints and let him focus on 
other aspects of the design. 

4.7. Processor Timing Model 
APDL uses a formal timing model for instructions in 

the program sequence. In this model, there is a lock signal 
associated with each instruction in the program. At each 
instruction cycle, one new instruction should be issued in 
the processor. Also, the time of every instruction inside 
the processor, i.e., those issued in the previous cycles, 
should be advanced unless the lock signal is activated for 
that instruction. 

In the APDL view, the code scheduler and the control 
unit of the processor collaborate in determining the pro-
gress of different instructions in the program. This view 
comes from the fact that both the code scheduler and the 
control unit can resolve control and data dependencies 
between instructions. For example, consider two instruc-
tions A and B where B has a data dependency on A. A 
computes its result 5 cycles after it has been issued and, 
thus, B should be locked for 5 cycles before it can pro-
gress and use the result of A. There are different possibili-
ties for how to provide for these 5 cycles: 1) code sched-
uler can create a 5-instrcution distance between A and B in 
the program sequence, or 2) control unit can lock B for 5 
cycles before using the result of A, or 3) a hybrid of both 
techniques can be used. 

In APDL, all the instructions in the program sequence 
are parallel and can be issued at the same time. However, 
code scheduler and control unit delay issuing instructions 
by locking them: code scheduler locks them by ordering 
them in the program sequence and control unit locks them 
by activating the associated lock signal during their execu-
tion in the processor. It should be noted that the concept of 
the lock signal has solely been introduced to formalize the 
timing model of the processor and in many cases it can be 
easily realized in the processor implementation. For ex-

ample, for processors with a pipelined structure, having a 
stall signal for each pipeline stage is enough to implement 
this locking mechanism. 

5. Summary and Future Works 

This paper presented the design of Anahita Processor 
Description Language (APDL). APDL uses a new ab-
straction level, called Timed Register Transfer Level, to 
describe the temporal behavior of the processor operations 
and their interaction with hardware resources in the proc-
essor. This provides enough information to automatically 
generate the control unit of the target processor and en-
ables automatic generation of aggressively optimizing 
compilers and cycle accurate instruction set simulators for 
the described processor. The authors believe that all of 
these features are strongly required for the DSE phase of 
designing embedded processors.  

Currently, we have developed the APDL Analyzer, a 
tool which reads the APDL description and converts it to 
an intermediate format, and are working on a retargetable 
compiler backend, a cycle-accurate instruction set simula-
tor, and an architectural verification tool based on APDL. 

References 
[1] Intel Corporation, “Moore's Law”, 

http://www.intel.com/technology/mooreslaw/index.htm (current 
April 2007). 

[2] M.K. Jain, M. Balakrishnan and A. Kumar, “ASIP Design 
Methodologies : Survey and Issues”, in Proc. VLSID'01, p. 76. 

[3] J.L. Hennessey and D.A. Patterson, “Computer Architecture: A 
Quantitative Approach”, 3rd Ed., Morgan Kaufmann Publishers, 
2003. 

[4] R. Leupers and P. Marwedel, “Retargetable code generation based 
on structural processor descriptions”, Design Automation for 
Embedded Systems, vol. 3, no. 1, 1998. 

[5] R. Leupers et al, “Retargetable generation of code selectors from 
HDL processor models”, in Proc. EDTC’97, pp. 140-144. 

[6] M. Freericks, “The nML machine description formalism”, 
Technical Report TR SM-IMP/DIST/08, TU Berlin CS Dept., 
1993. 

[7] Target Compiler Technologies, http://www.target.com 
[8] J. Paakki, “Attribute grammar paradigms-- a high-level 

methodology in language implementation”, ACM Computing 
Surveys, vol. 27, no. 2, pp. 196-255, June 1995. 

[9] G. Hadjiyiannis et al, “ISDL: An instruction set description 
language for retargetability”, in Proc. DAC’97, pp. 299-302. 

[10] S. Hanono and S. Devadas, “Instruction selection, resource 
allocation, and scheduling in the AVIV retargetable code 
generator”, in Proc. DAC’98, pp. 510-515. 

[11] S. Pees et al, “LISA-machine description language for cycle-
accurate models of programmable DSP architectures”, in Proc. 
DAC'99, pp. 933-938. 

[12] A. Halambi et al, “EXPRESSION: A Language for Architecture 
Exploration through Compiler/Simulator Retargetability”, in Proc. 
DATE'99, p. 485. 

[13] W. Qin, S. Rajagopalan, and S. Malik, “A formal concurrency 
model based architecture description language for synthesis of 
software development tools”, in Proc. LCTES'04, pp. 47 – 56.  

[14] R. Azevedo et al, “The ArchC Architecture Description Language 
and Tools”, International Journal of Parallel Programming, vol.33, 
no.5, pp. 453-484, October 2005. 

[15] C C. Siska, “A processor description language supporting 
retargetable multi-pipeline DSP program development tools”, in 
Proc. ISSS’98,  pp. 31-36. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


