
High Level Synthesis of Degradable ASICs Using
Virtual Binding

N. Honarmand1, A. Shahabi1, H. Sohofi1, M. Abbaspur2 and Z. Navabi1
1 CAD Laboratory, School of Electrical and Computer Engineering, University of Tehran, Tehran, IRAN

2 School of Electrical and Computer Engineering, Shahid Beheshti University, Tehran, IRAN

{nima, shahabi, h_sohofi}@cad.ece.ut.ac.ir, maghsoud@ipm.ir, navabi@ece.neu.edu

Abstract—As the complexity of the integrated circuits
increases, they become more susceptible to manufacturing
faults, decreasing the total process yield. Thus, it would be
desirable to develop techniques for reusing faulty dies, even
with a degraded performance. In this paper, a new method
for high level synthesis of degradable ASICs is presented.
Our technique introduces the concept of Virtual Binding. In
this approach, the operations are bound to virtual
components that are linked with actual non-faulty
components using a set of configuration multiplexers and
flip-flops embedded in the data-path. Using virtual
components simplifies the synthesis algorithm and decreases
the size of generated control unit. Virtual-to-physical
mapping of the components will be established by
programming the configuration flip-flops after diagnosing
the faulty components. The experimental results show that
the area and delay overhead of the resulting circuits have
acceptable values compared to the original, non-degradable
circuits.

Index Terms— Degradability, High Level Synthesis, Virtual
Binding.

I. INTRODUCTION
While advances in silicon integration technology has made

it possible to put more and more transistors on a single die, it
has also caused the dies to be more susceptible to
manufacturing faults and decreased the process yield.
Manufacturing faults tend to be local and affect only a limited
area of an IC. Hence, it is possible (and very desirable) to find
methods to make such faulty ICs reusable. Such faults could
occur in different parts of a circuit like control unit, steering
logic, functional units, etc. This work focuses on faults that
affect functional units.

One possible method to work around this problem is to use
spare modules and to replace the faulty ones with modules of
the same [1] or a different [2] type when necessary. This
method will result in less-than-full hardware utilization and
large hardware overhead, especially if multiple faulty modules
should be considered.

Reconfiguring the faulty IC to avoid using the faulty
modules and get the work done using the remaining non-faulty
ones is another approach, usually referred to as Degradability.
Traditionally, reconfiguration based techniques have been
used for highly regular circuits such as memory chips [3] and
processor arrays [4], but in the realm of general ASIC designs,
effective methods should still be sought for.

When a functional unit, in an already built ASIC, becomes
faulty, the operation(s) originally bound to that unit should be
performed by other available units. This means that the circuit
should use a different binding and, much likely, a different
scheduling than those used in the non-faulty circuit. The need
for such reconfigurations imply great challenges for designing
and manufacturing efficient control units and data paths, and
thus, for operation scheduling and hardware binding
algorithms. Hence, it seems natural for the proposed methods
to target the High Level Synthesis (HLS) [5] techniques.

Several methods, targeting the problem of degradability in
ASIC domain, have been proposed in the literature. Buonanno
et al [6] have considered an environment in which several
processes should be implemented as separate dedicated
hardware modules. They propose a high-level synthesis
methodology in which each of the generated modules is both
capable of the nominal execution of the related process itself,
in a fault-free environment, and simultaneous execution of a
reconfigured pair of processes in a fault-affected environment.
In [7], authors describe how to add extra interconnect to
render the resulting micro architecture reconfigurable in the
presence of any single functional unit failure. L/U
reconfiguration in [8] and band reconfiguration in [9] are
about modifying the scheduling and binding of the original
non-faulty circuit to make it suitable for the faulty one,
supporting at most one fault in each hardware resource class.
In [10], authors address the similar problem for circuits
implemented using FPGAs. They propose a solution in which
originally unused blocks and routing resources replace faulty
ones.

Generally, degradability-based methods imply a design
and manufacturing flow including the following steps: First, at
the design stage, special HLS algorithms should be used which
result in reconfigurable data paths and control units. Then,

after the IC has been built, diagnosis techniques should be
used to detect the faulty components of the circuit. Then,
based on the obtained fault pattern, a proper configuration,
which bypasses the faulty modules, should be chosen and
programmed into the circuit. This implies that the circuit
should unavoidably have some programmable elements in it
and post-manufacturing reconfiguration should be possible.
But, this is by no means a great overhead because widely-used
built-in provisions such as JTAG or scan chains can be used
for this purpose.

In this paper we propose an HLS technique that targets the
functional unit faults and makes it possible to reconfigure
every faulty circuit with at least one non-faulty resource of
each hardware resource class. The technique does not pose any
constraints on the particular scheduling and binding
algorithms that can be used for synthesis. Instead, it provides a
micro-architectural style that can be exploited to reduce the
run-time of the synthesis process as well as the complexity of
the synthesized control unit. The technique achieves this goal
by reducing the number of different fault patterns that should
be considered while synthesizing the degradable circuit.

We start, in Section II, by presenting a straightforward
technique, called the Static Binding, that will be used for
comparison. Then we present the new method, called Virtual
Binding, and the related micro-architectural style. Section III
presents the experimental results and Section IV gives the
summary and conclusions.

II. SYNTHESIS TECHNIQUES
A typical high-level synthesis (HLS) process includes

three different steps: Control/data flow extraction, operation
scheduling and resource allocation, and resource binding, from
which the last two are main concerns of this work. The results
of applying these three steps to a high level description are RT
level models of the control unit and data path of the target
hardware. If the resulting hardware is to be usable in the
presence of some permanent faults, there should be some
built-in provisions to reconfigure the circuit and get the work
done using the remaining FUs. The problem becomes more
complex when there are multiple faulty units. In this section
we investigate some techniques that could be used to achieve
this goal.

For the rest of paper, suppose that there are K different
classes of FUs (e.g. ALUs and multipliers) in the circuit, and
for each i-type class there are Ni instances of that type. We
will denote the j-th instance of the i-type FU class by FUi,j.
The total number of FUs in the circuit will be

∑
=

=
K

i
iNT

1
 -1-

Throughout this paper, we represent the number of
available FUs in a circuit C using a vector Cfs, called a FU
Count Vector (FCV):

KnnCfsC ,,1)(K= in which, ii Nn ≤≤0 -2-

Each FU class has a corresponding entry in the vector, the
value of which indicates the number of available non-faulty
FUs of that class. Also, we represent the state of the functional
units in a circuit C, using a vector Vfs with 0/1 elements, called
a Fault Pattern Vector (FPV):

⎪⎩

⎪
⎨
⎧

=

=

otherwise 0,

functinal is FU if 1,

,,1)(

i
iu

TuuCfsV K

 -3-

Each FU has a corresponding entry in the vector. The
value of 0 in an entry indicates that the corresponding FU is
faulty and 1 indicates that it is functional. We say that a
particular FPV, Vfs, is compatible with some FCV, Cfs, if the
number of i-type non-faulty FUs in Vfs is equal to ni in Cfs.

We assume that for a circuit to be repairable there should
be at least one non-faulty FU of each hardware class. We use
the terms Repairable Fault Pattern Vector (RFPV) and
Repairable FU Count Vector (RFCV) to refer to the FPV and
FCV of such circuits, respectively. The total number of
possible RFPVs is

)1
1

2(−∏
=

=
Κ

i
iΝN RFPV -4-

and the total number of possible RFCVs is

M1 - 1

R1 R2 R3 R4

M1

M1 - 2

R3 R4 R5 R6

M2 - 1

R1 R5 R6 R7

M2

M2 - 2

R2 R5 R7 R8

M2 – 1

R1

M2

R2 R3 R4 R5 R6 R7

M2 - 2

R2 R3 R4 R5 R6 R7 R8

Fig. 1. A sample, non-degradable cicuit with two multipliers Fig. 2. Impact, on the input multiplexers of M2, of applying Static
Binding method to the circuit of Fig. 1

∏
=

=
Κ

i iNNRFCV
1

-5-

A. Static Binding Method
One possible technique for creating degradable circuits is

to consider all the possible RFPVs of interest (i.e., Those
RFPVs for which we are willing to be able to reconfigure the
circuit) and perform the scheduling and binding for all of them
and combine all the resulting circuits into one big circuit. We
call this technique Static Binding. When faults occur, we can
diagnose the faulty FUs, detect the particular active RFPV and
reconfigure the control unit to switch to the provisioned
scheduling and binding for that RFPV. To demonstrate the
technique, Fig. 1 shows the data path of a circuit with two
multipliers. In this figure, M1 and M2 are the two multipliers
and Ri, 1 ≤ i ≤ 8, represent registers used to save the
intermediate results of the computations.

For this circuit, there are three RFPVs in which we might
be interested: When both multipliers are functional, when M1
becomes faulty and when M2 becomes faulty. When M1
becomes faulty, M2 should be able to perform those operations
originally assigned to M1. This means that this multiplier
should be able to receive inputs from those registers originally
connected to M1 and provide output to those registers having
M1 as one of their possible sources. Fig. 2 illustrates the
necessary changes in the input multiplexers of M2 to cope with
this situation. The case of M2 going faulty implies similar
changes in the input multiplexers of M1.

In each of the three RFPVs above, the control unit should
be able to issue proper control signals to select the inputs of
the multipliers and registers. One possible solution, to make
this possible, is to have one flip-flop associated with each FU
in the control unit, whose state indicates the faultiness of the
associated FU (e.g., ‘0’ for faulty and ‘1’ for functional).
Based on the values in these flip-flops, the control unit can
detect the RFPV at hand and issue the control signals
accordingly. These flip-flops could be configured either online
or off line. Thus, in this technique the current RFVP of the
circuit determines the functionality (or mode) of the control
unit.

Figure 5 shows the Static Binding algorithm. The inputs of
the algorithm are Data Flow Graph (DFG) of the design and
the maximum allowable number of FUs of different classes,
denoted by <N1,...,NK>. The algorithm, one by one, considers
all possible RFCVs and for each RFCV schedules the given
DFG. Because the scheduling algorithms only need to know
the number of available FUs, determined by the RFCV, and
not the exact fault pattern, the scheduling needs to be done
once for each RFCV and not once for each RFPV. Any
particular scheduling algorithm such as list scheduling [5] or
force-directed scheduling [11] may be used here. Then, for
each compatible RFVP of this RFCV, the algorithm will bind
the scheduled DFG to the non-faulty FUs. Here, again, any
resource sharing and binding algorithm, like those presented in
 [5], can be employed. The result of binding depends on the
exact fault pattern and thus we should do the binding once for
each RFVP. Then, the control unit will be augmented to use
resulted binding when the related RFVP is active. Also, the
required data transfer paths, i.e., paths from registers to FUs
and vice versa which are implied by the bound DFG, will be
added to the data path.

While this method may seem attractive for being able to
repair the circuit under many RFPVs (including multiple
faulty FUs), the associated cost, in terms of area and delay
overhead of the hardware and complexity of the synthesis
algorithm, tends to be rather high. The BindDfg function
should be invoked NRFPV times (see Equation -4-), which is an
exponential function of the maximum number of FUs and, this
increases the synthesis time greatly. Also considering NRFPV
different bindings would result both in excessive increase in
the size and delay of the control unit and also in introducing
very large multiplexers at the inputs of functional units and
registers of data path, thereby increasing the data path area and
delay. These drawbacks make Static Binding an impractical
method for circuits with large number of FUs and control
intensive natures.

B. Virtual Binding Method
To work around the drawbacks of the Static Binding

method, we propose a new technique, called Virtual Binding.
In this method, the number of the different bindings to be
considered in the control unit becomes a polynomial function

Mux

M2

R2 R3 R4 R8

M’ 1

R1

M’1_sel

R5 R6 R7 R3

M’ 2

R1

M’2_sel

: OMUX
: CMUX
: CFF

M2M1

Mux

MUX R1
MUX R1 _sel

To R1

... MUX R8
MUX R8 _sel

To R8

M3

: OMUX
: CMUX
: CFF

Fig. 3. Selecting the left input of multiplier M2 based on assigned
role in Virtual Binding method

Fig. 4. Selecting the output of virtual multiplier M’1 based on
assigned role in Virtual Binding method

of the number of FUs. For a circuit with 3 multipliers, for
example, we need only to consider 3 different situations: 3
non-faulty multipliers, 2 non-faulty multipliers and 1 non-
faulty multiplier (in contrast with 7 situations required in the
Static Binding method). In general, the maximum number of
bindings to be considered is equal to NRFCV (See Equation -5-).

In this technique, the main idea is to bind the operations to
virtual FUs (or roles) and let the virtual-to-physical mapping
of the resources take place while the circuit is working, using
the Configuration Multiplexers (CMUXs) and Configuration
Flip-Flops (CFFs) embedded in the data path. In what follows,
we refer to the virtual resources using names with prime (’)
sign, like M’1 and M’2, while names without the prime sign,
like M1, refer to the physical resources.

In Virtual Binding, the number of virtual FUs equals the
number of physical FUs, and each physical FU should be able
to play the role of those virtual FUs whose numbers are less
than or equal to its own number, i.e., FU1 is either faulty or
playing the role of FU’1, FU2 is either faulty or playing the
role of FU’1 (when FU1 is faulty) or playing the role of FU’2
(when FU1 is non-faulty), and so on. There is a single
multiplexer for each input of each virtual FU (white
multiplexers in Fig. 3). Also, the input of each register will be
selected using a single OMUX (white multiplexers in Fig.
4).We call these Ordinary Multiplexers (OMUXs), to be
distinguishable from CMUXs. Control signals for these
multiplexers stem from the control unit. OMUXs at the inputs
of virtual FUs provide the inputs of the CMUXs at the inputs
of physical FUs (shaded multiplexers in Fig. 3). These
CMUXs choose the proper input of the physical FUs based on
the role assigned to them. The control signal for this
multiplexer stems from the CFFs embedded in the data path
(shaded rectangle in Fig. 3). The contents of CFFs should be
programmed based on the active RFPV. Similar modifications
are introduced at the outputs of the FUs. For each virtual FU,
there is an output CMUX (shaded multiplexers in Fig. 4)
whose inputs are connected to the outputs of associated
physical FUs. These CMUXs will choose the proper output for
the virtual FU based on the role assignments The OMUXs at
the inputs of the registers will then select among the outputs of
these CMUXs.

We demonstrate the concept using a simplified example of
a circuit with 3 multipliers. The control unit has to consider 3

cases: (1) 3 non-faulty multipliers, (2) 2 non-faulty multipliers
and (3) 1 non-faulty multiplier. In each of the three situations,
the control unit has to generate control signals for the
following multipliers:

1. M’1, M’2 and M’3 for case (1)

2. M’1 and M’2 for case (2)

3. M’1 for case (3)

In each case, the control unit issues the control signals for
those virtual multipliers in use. For example, in case 2, the
control unit may decide that in the 3rd clock cycle, multiplier
M’2 should receive its left and right operands from registers R2
and R3 and its result should be stored in register R8. The rest of
the work is the responsibility of the CMUXs and CFFS in the
data path. They should get the outputs of registers R2 and R3 to
the inputs of the physical multiplier that is playing the role of
M’2 and get the output of that multiplier to the input of register
R8.

Based on the active RFPV, each non-faulty physical
multiplier should play the role assigned to one virtual
multiplier. For example, physical multiplier M2, should be able
to play the following roles:

1. In situation (1), it should be able to play M’2.

2. In situation (2), either it is faulty or it should play
the role of M’1 (if M1 is faulty) or the role of M’2
(if M3 is faulty).

3. In situation (3), either it is faulty or it should play
M’1.

Thus, this multiplier should be able to play one of the two
roles {M’1, M’2}. Selecting proper inputs for each role could
be done using one CMUX with 2 inputs, and 1 select line
(shaded multiplexer in Fig. 3). In Fig. 3, the multiplexers in
the upper row are OMUXs and the CMUX in the lower row
selects the proper input based on the configured role of the
physical multiplier M2. On the other hand, since the role of
virtual multiplier M’1 might be assigned to any of the physical
multipliers M1, M2 or M3, we need a CMUX with 3 inputs and
2 control lines to select the output of M’1. This is the
responsibility of the shaded multiplexer in Fig. 4.

STATICBINDING(dfg, <N1...,NK>)
begin
 for each RFCV, Cfs = <n1, ... nk>, do
 scheduled_dfg = SCHEDULEDFG(dfg, Cfs);
 for each RFPV, Vfs, which is compatible with Cfs do
 bound_dfg = BINDDFG(scheduled_dfg, Vfs);
 Add < Vfs, bound_dfg> to the control unit;
 Add data transfer paths implied by bound_dfg to the data
path;
 end for;
 end for;
end

VIRTUALBINDING(dfg, <N1...,NK>)
begin
 for each RFCV, Cfs = <n1, ... nk>, do
 scheduled_dfg = SCHEDULEDFG(dfg, Cfs);
 { { ><=

−−
321321

KKK nNnnNn
fsV 0.,..,0,1.,..,1,...,0.,..,0,1.,..,1'

111

 bound_dfg = BINDDFG(scheduled_dfg, V’fs);
 Add < Cfs, bound_dfg> to the control unit;
 Add data transfer paths implied by bound_dfg to the data
path;
 end for;
 Add required CMUXs and CFFs to the data path;
end

Fig. 5. Static Binding Algorithm Fig. 6. Virtual Binding Algorithm

Fig. 6 shows the Virtual Binding algorithm. The DFG of
the design and the maximum allowable number of FUs are
inputs of the algorithm. The algorithm, one by one, considers
all possible RFCVs and generates an scheduling for each
RFCV. Here again, any particular scheduling algorithm could
be used. Because the algorithm binds the DFG to virtual FUs,
for each RFCV, there is one virtual RFPV, denoted by V’fs. In
this virtual RFPV, the first non-faulty i-type virtual FU will
always be i,1FU' , the next one will be i,2FU' and the last will
be

ini,FU' , where ni comes from the Cfs. The scheduled DFG
will be bound to virtual FUs in the V’fs. Next, the control unit
will be augmented to use the resulted binding when the related
RFCV is active (Note that, here, the result of the binding
depends only on the RFCV and not a particular RFPV. Thus,
in Virtual Binding, it is the active RFCV that determines the
mode (or behavior) of the control unit, in contrast with the
case of Static Binding method where the active RFPV
determines the mode). In the next step, the required data
transfer paths will be added to the data path. After, considering
all the possible RFCVs, CMUXs and CFFs should be added to
the data path. For each physical FU, the input CMUXs will be
connected to the OMUXs of the associated virtual FUs. Also,
for each virtual FU, the output CMUXs will be connected to
the outputs of associated physical FU. For each added CMUX,
CFFs should be inserted to hold the control values of the
CMUXs.

To configure the circuits synthesized with Virtual Binding
method, one should first diagnose the faulty units. After
detecting the current RFPV (and thus the current RFCV), the
control unit should be programmed according to the current
RFCV and the CFFs in the data path should be programmed
according to current RFPV. It is interesting to note that the
existence of the CFFs and CMUXs in the data path greatly
simplifies the diagnosis process of such circuits. For test and
diagnosis purposes, one can efficiently use these elements by
putting the CFFs in the scan chain. More details, however, are
out of the scope of this paper and will not be discussed.

This technique greatly reduces the number of different
situations to be considered in the control unit, and hence,
reduces the area and delay of the control unit in comparison to
the Static Binding method. Also, according to the
experimental results, this technique tends to result in a smaller
data path than that of the Static Binding. This can be explained
as follows: In the Static Binding method, the multiplier M2 of
the previous example should be able to play the operations
originally bound to M1 and M3 because those multipliers might
go faulty. This means that M2 should receive all the original
inputs of M1 and M3 as its inputs, enlarging the input
multiplexers of M2. But in Virtual Binding method, each
virtual multiplier has its own input multiplexers and the
physical multipliers only use CMUXs to choose among the
possible roles that they would play. This will result in much
smaller multiplexers in the resulting data path, hence
decreasing its size.

III. EXPERIMENTAL RESULTS
We have applied the proposed techniques to nine standard

benchmark circuits, as described in Table I. For each circuit,
the maximum number of FUs of each class is given. We have

also reported the number of clock cycles in the schedule of the
original, non-degradable circuit. This number provides a
simple intuition into the complexity of the associated control
unit. Also, the number of possible RFPVs is given. This
number has been calculated using Equation -4-.

The synthesis results of the degradable circuits are
reported in TABLE II and TABLE III. TABLE II shows the
normalized area of the degradable counterparts of the
benchmark circuits. The values were normalized to the area of
the original, non-degradable circuit. TABLE III presents a
similar data regarding the delay of the degradable circuits. The
area and delay values have been separately reported for
control unit and data path and steering logic (i.e., multiplexers
and configuration flip flops) for the two methods. Also the last
column (titled ‘VB/SB %’) shows the relation between the
results of the two methods. Smaller numbers indicate better
performance of the Virtual Binding method as compared to the
Static Binding. As shown, the Virtual Binding method slightly
reduces the data path area, greatly shrinks the control unit
(especially for complex circuits like DCT) and increases the
data path delay with regard to the Static Binding method.
However, according to data in TABLE III, the data path delay
overhead is less than 5% compared to Static Binding method
and less than 15% compared to the original, non-degradable
circuit while the area reduction in control unit, compared to
Static Binding method, could be as high as 76% (in case of
DCT). Also, as shown in TABLE II, Virtual Binding does not
increase the data path area of the circuit very much compared
to the original circuit, and reasonably increases the control unit
area regarding the large number of RFPVs that are handled.

IV. CONCLUSIONS
In this paper, we proposed a new technique for high level

synthesis of degradable ASICs. This technique is capable of
repairing ASICs when there are multiple faulty units. In fact, it
is capable of repairing ASICs even when there is only one
non-faulty instance of each hardware resource class, compared
to the previous techniques that can handle at most one faulty
functional unit in each class. Because the technique does not
use spare modules, reconfigured circuits will have lower
performance due to the decreased number of available
functional units. This is a common phenomenon in all the
techniques not using spare modules to replace the faulty ones.

We proposed the Virtual Binding method that allows for
smaller control units, and slightly smaller data paths, than

TABLE I. BENCHMARK CIRCUITS

of FUs
Circuit

ALU Mult Div

of
Scheduling

Steps

of
Possible
RFPVs

DCT 4 4 0 5 225
CASCADE 1 3 0 4 7
DIFF_EQ 1 4 0 7 15
OVEN_CONT 3 1 1 6 7
PAOULIN 1 4 0 5 15
POLY_EVAL 2 3 0 5 21
REAL 2 2 0 5 9
TSENG 3 1 0 5 7
PAR_IIR_4 2 4 0 7 45

those obtained through the more straight forward Static
Binding method. For circuits with a relatively high number of
functional units, and thus many possible RFPVs like DCT and
4th

 order parallel IIR filter, Virtual Binding results in a much
smaller control unit.

The efficiency of the proposed technique has been
examined using a number of standard benchmark circuits. The
experimental results show that area and delay overhead of the
circuits obtained through Virtual Binding method are in
acceptable ranges compared to original, non-degradable
circuit. For benchmark circuits, delay and area overhead of the
degradable circuits are no more than 15% and 36%,
respectively.

REFERENCES
[1] L.M. Guerra, M.M. Potkonjak, and J.M. Rabaey, "High-Level

Synthesis Techniques For Efficient Built-In-Self-Repair", The IEEE
International Workshop on Defect and Fault Tolerance in VLSI
Systems, 1993, pp. 41-48.

[2] L.M. Guerra, M. Potkonjak, and J.M. Rabaey, "Behavioral-Level
Synthesis of Heterogeneous BISR Reconfigurable ASIC’s," IEEE
Transactions on VLSI Systems, vol. 6, no. 1, pp. 158-167, Mar.
1998.

[3] R. Naidu, and S. Mahapatra, “Fault Tolerance in N-MOS Random
Access Memories with Dynamic Redundancy Methods”,
Microelectronics and Reliability, vol. 28, no. 2, pp. 193-200,1988.

[4] R. Negrini, M.G. Sami, and R. Stefanelli, “Fault Tolerance Through
Reconfiguration in VLSI and WSI Arrays”, MIT Press, 1989.

[5] G. De Micheli, “Synthesis and Optimization of Digital Circuits”,
McGraw-Hill, Hightstown, NJ, 1994.

[6] G. Buonanno, M. Pugassi, and M.G. Sami, "A high-level synthesis
approach to design of fault-tolerant systems" in Proc. VTS’97, pp.
356-361, 1997.

[7] B. Iyer, R. Karri, and I. Koren. “Phantom Redundancy: A High-
Level Synthesis Approach for Manufacturability”, In Proc. ICCAD,
pp. s-661, Nov. 1995.

[8] Wah Chan, and A. Orailoglu, "High-level synthesis of gracefully
degradable ASICs," in Proc. ED&TC, pp. 50-54, 1996.

[9] A. Orailoglu, "Microarchitectural Synthesis of Gracefully
Degradable, Dynamically Reconfigurable ASICs," in Proc. of
ICCD’96, pp.112-117, Oct. 1996.

[10] S. Mitra, W.-J Huang, N.R. Saxena, S.-Y. Yu, and E.J. McCluskey,
"Reconfigurable Architecture For Autonomous Self-Repair", IEEE
Design & Test of Computers, vol. 21, no. 3, pp. 228- 240, May-Jun.
2004.

[11] P. Paulin and J. Knight, "Force-Directed Scheduling for the
Behavioral Synthesis of ASICs", IEEE Transactions on
CAD/ICAS, Vol. CAD-8, No. 6, pp. 661-679, July 1989.

TABLE II. NORMALIZED AREA OF DEGRADABLE CIRCUITS

Static Binding Virtual Binding VB/SB%
Circuit

Control DPath Steering Control DPath Steering Control DPath Steering
DCT 10.85 1.40 7.44 2.58 1.36 6.73 23.81 97.06 90.35
CASCADE 1.61 1.14 3.90 1.31 1.10 3.20 81.28 97.02 82.06
DIFF_EQ 2.30 1.23 4.81 1.42 1.15 3.52 61.64 93.62 73.20
OVEN_CONT 1.42 1.22 4.99 1.17 1.15 3.61 82.38 94.13 72.36
PAOULIN 2.10 1.21 6.97 1.30 1.14 3.55 61.82 94.38 50.92
POLY_EVAL 1.69 1.20 5.54 1.19 1.12 3.88 70.27 94.10 69.92
REAL 2.05 1.26 4.50 1.45 1.18 3.55 70.57 93.52 78.92
TSENG 1.59 1.26 3.20 1.19 1.18 2.48 74.88 93.12 77.48
PAR_IIR_4 5.40 1.36 4.59 2.38 1.29 3.89 44.02 94.90 84.72

TABLE III. NORMALIZED DELAY OF DEGRADABLE CIRCUITS

Static Binding Virtual Binding VB/SB %
Circuit

Control DPath Steering Control DPath Steering Control DPath Steering
DCT 1.20 1.10 2.03 1.04 1.15 2.74 87.07 105.00 134.89
CASCADE 1.04 1.08 5.27 1.08 1.14 6.84 104.35 105.38 129.87
DIFF_EQ 1.00 1.11 1.33 1.00 1.15 1.61 100.23 104.15 121.58
OVEN_CONT 1.02 1.04 1.30 1.02 1.03 1.66 100.00 101.5 127.89
PAOULIN 1.07 1.05 2.36 1.03 1.09 2.95 96.10 104.27 125.22
POLY_EVAL 1.05 1.06 5.72 1.00 1.08 6.47 95.73 101.98 113.05
REAL 1.04 1.07 1.55 1.02 1.08 1.90 98.30 101.35 122.53
TSENG 1.04 1.01 1.28 1.06 1.00 1.57 101.72 101.5 123.00
PAR_IIR_4 0.94 1.10 1.38 0.98 1.12 1.76 103.59 101.78 127.46

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

