
IEICE Electronics Express, Vol.4, No.10, 332–339

Degradable mesh-based
on-chip networks using
programmable routing
tables

Ali Shahabia), Nima Honarmand, Hassan Sohofi,
and Zainalabedin Navabi
CAD Laboratory, School of Electrical and Computer Engineering,

University of Tehran, Tehran, IRAN

a) shahabi@cad.ece.ut.ac.ir

Abstract: The decreasing manufacturing yield of integrated circuits,
as a result of rising complexity and decreased feature size, and the
emergence of NoC-based design techniques, has necessitated the search
for network reconfiguration techniques for reusing NoCs with faulty
communication hardware. In this paper, we propose a method to cope
with the problem of faulty communication links in mesh-based NoCs.
The method is based on the use of programmable routing tables, which
has a fixed number of entries, in network switches. Experimental results
show that a network reconfigured for fault masking by programming
its routing tables has acceptable but degraded performance parameters
as compared to the non-faulty network.
Keywords: degradability, network on chip, programmable routing
table
Classification: Integrated circuits

References

[1] R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux,
P. P. Pande, C. Grecu, and A. Ivanov, “System-on-Chip: Reuse and Inte-
gration,” Proc. IEEE, vol. 94, no. 6, pp. 1050–1069, June 2006.

[2] L. Benini and G. De Micheli, “Networks on chips: a new SoC paradigm,”
IEEE Computer, vol. 35, no. 1, pp. 70–78, Jan. 2002.

[3] S. Kumar, A. Jantsch, M. Miliberg, J. Oberg, J.-P. Soininen, M. Forseli, K.
Tiensyrja, and A. Hemani, “A Network on Chip Architecture and Design
Methodology,” in Proc. ISVLSI’02, pp. 117–124, 2002.

[4] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Performance
Evaluation and Design Trade-Offs for Network-on-Chip Interconnect Ar-
chitectures,” IEEE Trans. Comput., vol. 54, no. 8, pp. 1025–1040, Aug.
2002.

[5] R. Marculescu, “Networks-on-Chip: The Quest for On-Chip Fault-
Tolerant Communication,” in proc. ISVLSI’03, pp. 8–12, Feb. 2003.

[6] M. Yang, T. Li, Y. Jiang, and Y. Yang, “Fault-Tolerant Routing Schemes
in RDT(2,2,1)/a-Based Interconnection Network for Networks-on-Chip
Designs,” in Proc. ISPAN’05, pp. 1–6, Dec. 2005.

[7] N. Honarmand, A. Shahabi, H. Sohofi, M. Abbaspour, and Z. Navabi,

c© IEICE 2007
DOI: 10.1587/elex.4.332
Received January 26, 2007
Accepted March 29, 2007
Published May 25, 2007

332

IEICE Electronics Express, Vol.4, No.10, 332–339

“High Level Synthesis of Degradable ASICs Using Virtual Binding,” VLSI
Test Symposium, 2007, in press.

[8] C. Grecu, A. Ivanov, R. Saleh, E. S. Sogomonyan, and P. P. Pande,
“On-line Fault Detection and Location for NoC interconnects,” in Proc.
IOLTS’06, pp. 145–150, 2006.

[9] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks—An En-
gineering Approach, Morgan Kaufmann, 2002.

1 Introduction

System-on-chip (SoC) design methodologies [1] have provided the appropriate
and integrated solutions to manage the ever-increasing complexity of state-
of-the art digital and mixed-signal systems. But still communication between
processing elements in an SoC is one of the most important challenges in SoC
design methodology. Networks on Chips (NoCs) [2] have been proposed as a
solution to this problem. Several NoC architectures and their implementation
details have been presented in [3] and [4].

As the IC fabrication technologies move to nano-scale feature sizes and
complexity and transistor count of the ICs grow, the produced dies become
more and more susceptible to manufacturing faults and the process yield
decreases. Because manufacturing faults tend to be local and affect only a
limited area of the IC, it is possible (and very desirable) to find methods
to make such faulty dies reusable. Such failures can occur in Processing
Elements (PEs) and/or in communication fabric.

One possible method to work around the permanent faults is to use fault
tolerant architectures, which has been addressed in [5] and [6]. Such tech-
niques tend to introduce some redundancies into the circuit in order to cope
with faulty elements and thus result in less-than-full hardware utilization.

Reconfiguring the faulty IC to avoid using the faulty modules (PEs,
switches or links) and get the work done using the remaining non-faulty ones
is another approach, that is usually referred to as degradability [7]. Generally,
degradability-based methods imply a design and manufacturing flow includ-
ing the following steps: First, at the design stage, special algorithms should
be used which result in reconfigurable circuits. Then, after the IC has been
built, diagnosis techniques [8] should be used to detect the faulty components
of the circuit. Then, based on the obtained fault pattern, a proper configura-
tion, which bypasses the faulty elements, should be chosen and programmed
into the circuit. This implies that the circuit should inevitably have some
programmable elements in it and post-manufacturing reconfiguration should
be possible. But, this is by no means a great overhead because widely-used
built-in provisions such as JTAG or scan chains can be used for this purpose.
The reconfigured circuit is likely to have a degraded performance, compared
to the non-faulty one, because of the decreased number of available resources.

In this paper, we focus on degradability-based methods for recovering a
faulty communication fabric in networks with mesh [3] topology. Mesh-based

c© IEICE 2007
DOI: 10.1587/elex.4.332
Received January 26, 2007
Accepted March 29, 2007
Published May 25, 2007

333

IEICE Electronics Express, Vol.4, No.10, 332–339

networks are appearing as a de facto standard in NoC realm because of their
regular and efficient layout and simple routing mechanism.

2 Proposed Routing Mechanism

In an NoC, switches are responsible for routing the packets between nodes.
Each switch has a set of bidirectional ports through which it is connected
to neighboring switches or PEs. It also contains a router to define a path
between input and output ports, buffers to store intermediate data and an
arbiter to grant access to a given port when multiple input requests arrive in
parallel.

One important aspect of the switch design is the implementation of the
routing algorithm. It can be implemented as a hardwired module or as
a Programmable Routing Table (PRT). In the hardwired style, no post-
manufacturing programming is required but the switch cannot be changed
to cope with the link failures. Thus, the chip will become unusable whenever
some links go faulty. But, in the case of PRTs, the switch can be reconfigured
to bypass the broken links and get the job done using the remaining links.

The paths taken by packets between source and destination switches,
hence the contents of the PRTs, are defined by the routing algorithm in
use. The algorithm must prevent deadlock, live-lock and starvation [9]. The
live-lock refers to the situation in which some packets will not reach their
destination, even if they never get blocked permanently.

Based on the particular topology and routing algorithm in use, there may
be some methods to work around the above problems. We demonstrate such
a technique for mesh topology, Fig. 1 (a), and its widely used XY routing
algorithm.

Fig. 1. (a) 2-D Mesh Topology, (b) Mesh-based routing
mechanism

In mesh-based networks [3], the address of a node is a pair (x, y) which is
the coordinates of the node in the mesh. Each mesh switch, in general, has
five ports: one attached to the local PE (local port) and the other four to
the neighboring switches (system ports). When a packet arrives, it should be
delivered to the attached PE, through the local port, if it is destined for that
node. Otherwise, one of the system ports should be selected according to the
destination address. A simple live-lock free routing algorithm, called XY [9],

c© IEICE 2007
DOI: 10.1587/elex.4.332
Received January 26, 2007
Accepted March 29, 2007
Published May 25, 2007

334

IEICE Electronics Express, Vol.4, No.10, 332–339

has been proposed for the mesh topology. In this algorithm, a packet is first
routed in X direction: if the x-coordinate of the destination is less than that
of the current node it will be routed to the left and if it is more than that
of the current node it will be routed to right. Afterwards, the packet will be
routed in the Y direction, i.e., up or down, based on the y-coordinate of the
destination address.

Based on this algorithm, Fig. 1 (b) shows the proposed routing mech-
anism. Two small comparators compare the x- and y-coordinates of the
current node with those of the destination. The outputs of each comparator
can assume three different one-hot coded states (G for greater, E for equal
and L for less). Thus, we can have 9 different situations for the combination
of comparator outputs. An encoder will generate a 4-bit signal indicating
which of these 9 situations has occurred. The output of the encoder will
be used to index a 9-entry, programmable lookup table. Each entry of the
lookup table contains a port identifier to indicate one of the five ports that
should be used. Apparently, the routing hardware has a fixed structure and
does not depend on the number of nodes in the network. Throughout this
paper, we refer to this method as Mesh-Based Routing (MBR) because it is
tailored to the mesh topologies.

3 Programming MBR-based PRTs Under Link Failures

The network topology could be considered as a graph with switches being its
vertices and links being its edges. If this graph is connected, then the network
will be structurally connected. We say that the network is routing-connected
if for every source and destination (SRC, DST) pair of nodes, a packet orig-
inated in SRC can be routed to reach DST. Whether this is possible or not
depends on the routing table configuration of the nodes that the packet vis-
its. Improper configurations might cause a live-lock and prevent the packet
from reaching its destination. We call a network routing-connectable if there
is a set of PRT configurations to render the network routing-connected.

3.1 Reconfiguration Procedure
It is possible for a network of MBR-based PRTs to be structurally connected
but not routing-connectable. Figure 2 (a) shows an example of such a net-
work. In this figure, the crosses indicate broken links. No configuration can
be found for the MBR-based PRTs to create a routing-connected network.
Because when B has a packet destined for E, it should send it using BE link
and when it has a packet destined for H it should not use BE link. Thus,
there is no feasible port identifier for (ExGy) entry of B’s routing table.

When a packet arrives at a switch, either it is destined for the attached
processing element or it should be routed using one of the four system ports.
In what follows, we use L, R, D and U to indicate moving in left, right, down
or up directions respectively. The decision on where to route the packet is
based on the result of address comparison between current switch and the
destination switch. Consider a packet which is currently at a switch addressed

c© IEICE 2007
DOI: 10.1587/elex.4.332
Received January 26, 2007
Accepted March 29, 2007
Published May 25, 2007

335

IEICE Electronics Express, Vol.4, No.10, 332–339

Fig. 2. (a) a network which is not routing connectable
using MBR (b) a network with one faulty link
(c) a network with two faulty links (d) routing
constraints in network of (c)

(xcur, ycur) and is destined for switch (xdst, ydst). We define the distance of
the switches as

dist(cur , dst) = (|xdst − xcur| + |ydst − ycur|)

This distance is the minimum number of hops that the packet should
traverse until it reaches its destination. If a routing algorithm routes a packet
in such a way that its distance from the destination switch decreases with each
move, the algorithm will be live-lock free. This is because a live-locked packet
will visit a switch twice and this cannot happen with a decreasing sequence
of distances. The conventional XY routing algorithm has this property and
thus is live-lock free. We call every move that decreases the distance of packet
from its destination a positive move. Otherwise, we call it a negative move.

Sometimes there are multiple positive moves for a packet. For example,
if the destination is both to left and above the current switch, taking either
direction will be a positive move. In this case, direction to choose depends on
the routing table of the current switch. An MBR-based routing table has one
entry for every possible combination of positive moves, as shown in Fig. 1 (b).
The contents of this table indicate the relative priority of moving in different
directions. For example, if in the entry corresponding to positive moves in
up and left directions, (LxLy) in Fig. 1 (b), the port identifier of the left port
is given, then the priority of moving in the left direction is more than moving
up. We use the “<” operator to show the priority of movements. In this
case, we write U < L.

When a node becomes faulty, it will need some help from one of the
neighboring nodes (helping node) to route the packet. Since the switch with
a faulty link might be forced to perform a negative move, the distance may
increase and if the helping node does not have its priorities properly set, it
might return the packet to the original switch and cause live-lock. Hence, it
would be necessary to put some constraints on the possible priority combi-
nations that the helping node can use.

3.2 An Example with One Faulty Link
To demonstrate our technique, Fig. 2 (b) shows a mesh structure with one
broken link between nodes E and F. Since the EF link is faulty, Node E

c© IEICE 2007
DOI: 10.1587/elex.4.332
Received January 26, 2007
Accepted March 29, 2007
Published May 25, 2007

336

IEICE Electronics Express, Vol.4, No.10, 332–339

can select one of its three adjacent nodes (B, D, and H) as the helping node.
Suppose that we choose node B. This will impose some restrictions on the
routing table of B to prevent live-lock situations. Suppose node E has a
packet destined for node F. Since the EF link is faulty, E will send the
packet to B, instead. Now, node B has a packet that should move both right
and down. If, in routing table of B, down moves have a higher priority than
right moves, B will send the packet back to E and will cause a live-lock.
Thus, for B, the priority of down move should be less than right move, or
D < R. This is a Hard Constraint (HC) for B, i.e., it must be met to have a
live-lock free routing.

When we consider all the possible faulty links and extract all the required
constraints, it might be the case that for a switch, the constraints are conflict-
ing. For example, a switch might have both L < R and R < L constraints.
Obviously, these are conflicting constraints and cannot be satisfied simul-
taneously. Suppose that in our example, we first choose B as the helping
node of E and after considering other nodes, we get trapped in a conflicting
situation. It might be the case that this conflict has happened because of
choosing B as the helping node. Hence, we should now check the alternative
choice and test the selection of H or D instead of B as the helping node. This
means that our algorithm should have a backtracking nature and whenever
it encounters some conflict, it should backtrack to the last point that it had
an alternative choice and test that one.

Moreover, we can use another constraint type, called Soft Constraint (SC)
to reduce the average length of paths in the mesh structure under faulty
conditions. Suppose that in Fig. 2 (b), E is helped by node B to route in the
right direction. It is better to force switch E to first route the packets using
its non-faulty links (up, left and down) if it is a positive move. This means
that switch E will use the helping node B to route when no other choice
exists. Thus we consider the following SCs for node E: {R < U, R < D,
R < L}. Since, moving to right and left are exclusive and cannot happen
at the same time, the (R < L) constraint is useless and can be removed.
As another example, Fig. 2 (c) shows a network with two faulty links and
Fig. 2 (d) shows the assigned hard and soft constraints for each node. The
nodes missing in the table have no constraints.

3.3 Reconfiguration Algorithm
Alg. 1 shows the reconfiguration algorithm. The ConfigureNetwork routine
has two inputs: set of faulty links that have not been handled yet, and the
constraints resulting from handling previous faults. It selects one faulty link
from the list and, one by one, examines all possible helping nodes for the
node affected by the faulty link. It repeats this process until there remains
no faulty link in the list, i.e., all the faults get handled, or at some point, the
set of constraints could not be satisfied. In the former case, it checks all the
routing table configurations that satisfy the constraints. If a configuration
results in a live-lock free network, it will be returned as the result. Otherwise,
the algorithm will backtrack to the point of the last choice. In the latter case,

c© IEICE 2007
DOI: 10.1587/elex.4.332
Received January 26, 2007
Accepted March 29, 2007
Published May 25, 2007

337

IEICE Electronics Express, Vol.4, No.10, 332–339

Alg. 1. Reconfiguration algorithm for MBR

the algorithm will consider alternative helping nodes for the node affected by
current faulty link. If there is no unchecked alternative, the search fails and
the algorithm will return NULL to indicate failure.

4 Experimental Result

To assess the proposed technique, we considered 10 examples 4 by 4 networks
with 1 to 9 faulty links. The number of faulty links cannot exceed 9 because
the network will become structurally unconnected. To measure the quality
of obtained network configurations, we extracted the following parameters
for each network: the average and maximum path length in the network
and the average and maximum link load. Load of a particular link indicates
the number of different (SRC, DST) pair of nodes whose packets should
traverse that link. Table I presents the results obtained for MBR-based
techniques. The row indicated with XY gives the performance parameters
for a network with no faulty links in which all the routing tables are configured
according to XY. The values in parentheses are normalized with regard to
the corresponding values of non-faulty network.

As Table I indicates, the general trend of performance parameters is to
get worse when the number of faulty links increases. However, there are
some deviations. These deviations can be attributed to the sensitivity of the
results to both the number and the pattern of faulty links. Ex.2 and Ex.3
demonstrate the sensitivity to the pattern of faulty links. In both cases there
are 2 faulty links and only the positions of the links differ in two cases. Also,
as expected, when the algorithm is able to incorporate SCs, the results will
be better than when only HCs are considered. But in some cases, EX6 to

c© IEICE 2007
DOI: 10.1587/elex.4.332
Received January 26, 2007
Accepted March 29, 2007
Published May 25, 2007

338

IEICE Electronics Express, Vol.4, No.10, 332–339

Table I. Experimental Results

EX10, it might not be possible to incorporate the SCs because of too much
restrictions imposed.

5 Conclusion

In this paper, we have considered the problem of faulty links in NoCs and
have proposed a method for reconfiguring the routing mechanism of a network
in order to bypass the faulty links. This method is based on using network
switches with programmable routing tables. The reconfigured network might
have a lower performance due to decreased number of communication links.
We considered a new optimized routing mechanism, suitable for mesh net-
works, and proposed an algorithm to reconfigure the networks using that
routing mechanism. The experimental results show that the network recon-
figured to bypass the faulty link, has acceptable but degraded performance
parameters with regard to the original, non-faulty, network.

Acknowledgments

The authors would like to thank the Iran Telecommunication Research Center
(ITRC) for supporting this work.

c© IEICE 2007
DOI: 10.1587/elex.4.332
Received January 26, 2007
Accepted March 29, 2007
Published May 25, 2007

339

