
A Heuristic Search Algorithm for Re-routing of On-Chip Networks in The
Presence of Faulty Links and Switches

Nima Honarmand, Ali Shahabi and Zain Navabi
 CAD Laboratory, School of ECE, University of Tehran, Tehran, IRAN

{nima, shahabi}@cad.ece.ut.ac.ir, navabi@ece.neu.edu

Abstract

 The decreasing manufacturing yield of integrated cir-

cuits, as a result of rising complexity and decreased fea-
ture size, and the emergence of NoC-based design tech-
niques, has necessitated the search for network reconfigu-
ration techniques for reusing NoCs with faulty compo-
nents. In this paper, we propose a new method to cope with
the problem of faulty components in mesh-based on-chip
networks. The method is based on using programmable
routing tables in network switches. We propose a heuristic
algorithm to search for a valid configuration for these
routing tables when several physical faults occur in com-
munication links, switch ports, routing tables and routing
logics. The algorithm considerably reduces the required
search effort as compared to the exhaustive search method.

1. Introduction
By the end of the decade, the 45-nm transistors operat-

ing below 0.7 volt will make it possible to put 4 billion
transistors running at 15 GHz on a single chip [1]. System-
on-chip (SoC) design methodology [2] has been proposed
as a way to manage the increased complexity of these ICs.
In this technique, pre-designed and pre-verified Intellectual
Property (IP) cores are integrated on a single chip. Com-
munication between the IP cores is one of the most impor-
tant challenges in the SoC design methodology. Networks
on Chip (NoC), [3] and [4], is an emerging paradigm
which addresses this problem. A typical NoC consists of
four major components: Processing Elements (PEs), Net-
work Interface Units (NIUs), Switches and Physical Links.
PEs do the actual processing while the others constitute the
communication fabric. Several NoC architectures and their
implementation details have been presented in [5] and [6].

With the emergence of nano-scale feature sizes, the
produced ICs become more and more susceptible to manu-
facturing faults and the process yield decreases [1]. Be-
cause manufacturing faults tend to be local and affect a
limited area of the die, it is possible (and very desirable) to
find methods to make such faulty dies reusable. Such fail-
ures can occur in PEs and/or in communication fabric, i.e.,
switches and communication links. One possible method to

work around the permanent faults is to use fault tolerant
architectures, [7] and [8]. Such techniques tend to intro-
duce some redundancies into the circuit in order to cope
with faulty elements and thus result in less-than-full hard-
ware utilization. Reconfiguring the faulty IC to avoid using
the faulty modules (PEs, switches or links) and get the
work done using the remaining non-faulty ones is another
approach, that is usually referred to as degradability [9].
The reconfigured circuit is likely to have a degraded per-
formance, compared to the non-faulty one, because of the
decreased number of available resources. Generally, recon-
figuration-based methods imply a design and manufactur-
ing flow including the following steps: First, at the design
stage, special algorithms should be used which result in
reconfigurable circuits. Then, after the IC was built, diag-
nosis techniques [10] should be used to detect the faulty
components of the circuit. Then, based on the obtained
fault pattern, a proper configuration, which bypasses the
faulty elements, should be chosen and programmed into the
circuit. Widely-used built-in test provisions such as JTAG
or scan chains can be used for this purpose.

In this paper, we focus on static reconfiguration-based
methods for recovering a faulty communication fabric in
networks with mesh [5] topology. Mesh-based networks
are appearing as a de facto standard in the NoC realm be-
cause of their regular and efficient layout and simple rout-
ing mechanism. In Section 2, we introduce a simple and
efficient implementation of routing logic in Mesh-based
network switches. In Section 3, we define the problem and
provide the proposed reconfiguration algorithm. Section 4
provides the experimental results and Section 5 concludes
the paper.

2. Proposed routing mechanism
In an NoC, switches are responsible for routing the

packets between nodes. Each switch has a set of bidirec-
tional ports through which it is connected to neighboring
switches or PEs. It also contains a router to define a path
between input and output ports, buffers to store intermedi-
ate data and an arbiter to grant access to a given port when
multiple input requests arrive in parallel.

IEEE EWDTS, Yerevan, September 7-10, 2007 411

One important aspect of the switch design is the imple-
mentation of the routing algorithm. Routing algorithm de-
termines the path that a packet should traverse to reach its
destination. Typically, the whole path is determined either
at the source node (source routing) or on a node-by-node
basis while the packet traverses the network (distributed
routing) [11]. Also, the routing algorithm might be adap-
tive or deterministic [11]. In the adaptive routing, the path
taken between a source and destination pair might vary
depending on dynamic network parameters like link con-
gestion and power consumption while in the deterministic
routing the path remains the same. Simple and efficient
hardware implementation of deterministic and distributed
routing for mesh networks is likely to result in their accep-
tance as the de facto standard for routing in the NoC realm.
Hence, in this work, we focus on these algorithms.

In NoC switches, the routing algorithm can be imple-
mented as a hardwired module or as a Programmable Rout-
ing Table (PRT). In the former case, no post-manufacturing
programming is required but the switch cannot be changed
to cope with the physical failures. Thus, the chip will be-
come unusable whenever some components become faulty
unless fault-tolerance provisions have been made into the
circuit. But, in the latter case, the switches can be reconfig-
ured to bypass the faulty elements. This approach, inevita-
bly, adds a PRT programming step to the manufacturing
process.

The simplest way to implement a PRT is to use a
lookup table with as many entries as the number of nodes
in the network. We call this technique Per-Address Routing
(PAR). The index of the table will be the destination ad-
dress of a packet and each entry will contain the identifier
of the proper output port for the given destination address.
But PAR is not the only possible, or even the best, imple-
mentation of PRT. In fact, PAR suffers from two major
drawbacks: (1) The size of the lookup table will grow line-
arly with the number of NoC nodes. Besides the area over-
head, since table lookup should take place at least once for
every received packet, the large size of the table and the
resulting delay of lookup operation will decrease the
throughput of the switch. (2) PAR is not amenable to net-
work scaling and design reuse because the switch cannot
be used in networks with more nodes than the number of
lookup table entries, and thus redesign will be needed.

In mesh-based networks, the address of a node is a pair
(x,y) which is the coordinates of the node in the mesh. Each
mesh switch, in general, has five ports: one attached to the
local PE (local port) and the other four to the neighboring
switches (system ports). When a packet arrives, it should
be delivered to the attached PE, through the local port, if it
is destined for that node. Otherwise, one of the system
ports (Left, Right, Up and Down) should be selected ac-
cording to the destination address. A simple dimension
routing algorithm, called XY [11], has been proposed for
the mesh topology. In this algorithm, a packet is first
routed in X direction (left or right) and then in the Y direc-
tion (up or down). Based on this algorithm, Fig. 1 shows
the proposed routing mechanism. Two small comparators
compare the x- and y-coordinates of the current node with
those of the destination. The outputs of each comparator
can assume three different one-hot coded states (G for
greater, E for equal and L for less). Thus, we can have 9
different situations for the combination of comparator out-
puts. An encoder will generate a 4-bit signal indicating
which of these 9 situations has occurred. The output of the
encoder will be used to index a 9-entry, programmable
lookup table. Each entry of the lookup table contains a port
identifier to indicate one of the five ports that should be
used. Unlike PAR-based routers, this routing hardware has
a small and fixed structure that does not depend on the
number of nodes in the network. Throughout this paper, we
refer to this method as Mesh-Based Routing (MBR) be-
cause it is tailored to the mesh topologies.

3. Programming PRTs Under Failures
In an NoC, physical faults might occur in the processing

elements, communication links and switches components,
i.e., ports, routing table and router logic (comparators and
the encoder in Fig. 1). To provide degradability in the
presence of faulty PEs, techniques like Virtual Binding [9]
can be used. In this work, we focus on the degradability in
presence of faulty communication fabric. The following
text describes an algorithm that tries to find a proper set of
MBR-based PRT configurations to compensate for the
effects of link and switch failures. To increase the general-
ity of the algorithm, we consider two unidirectional links
between each two neighboring nodes and assume that
faults might affect each of these links separately. Also, we
assume that faults might affect each input and output port
of a switch independently. In addition, Faults in the indi-
vidual entries of the routing table are considered sepa-
rately.

3.1. Structural vs. Routing Connectivity
The network topology could be considered as a graph

with switches being its vertices and links being its edges. If
this graph is connected, then the network will be structur-
ally connected. We say that the network is routing con-
nected if for every source and destination (SRC, DST) pair
of nodes, a packet originated in SRC can be routed to reach
DST. Whether this is possible or not depends on the routing

>=<
In 1

In 2

>
=
<

>=<
In 1

In 2

>
=
<

X - Destination

X - Current Node

Y - Destination

Y - Current Node

Encoder

G X

E x

L X

G Y

E y

L Y

Port ID

/
4 bits

GX Gy
GX EY
GX LY
EX GY
EX EY
EX LY
LX Gy
LX EY
LX LY

Figure 1. Mesh-based routing mechanism

412 IEEE EWDTS, Yerevan, September 7-10, 2007

table configuration of the nodes that the packet visits. Im-
proper configurations might prevent the packet from reach-
ing its destination. We use the term valid configuration to
refer to configurations resulting in a routing connected
network.

We call a network routing connectable if there is a set
of PRT configurations to make the network routing-
connected. It is possible for a network of MBR-based
PRTs to be structurally connected but not routing-
connectable. Figure 2(a) shows an example of such a net-
work. In this figure, the crosses indicate broken links. No
configuration can be found for the PRT of node B because
when B has a packet destined for E, it should send it using
BE link and when it has a packet destined for H it should
not use BE link. Thus, there is no feasible port identifier
for (Ex,Gy) entry of B's routing table.

One possible method to find a proper configuration is
the exhaustive search. In this method we should consider
all the possible network configurations and check each one
to see whether it creates a routing connected network. This
is not a feasible approach because, for example, in a small
4 by 4 network, there are 16 nodes, 8 PRT entries per node
that might use the system ports and 4 possible ports per
entry, resulting in 48*16 or 2256 different configurations.

In this work, we propose a heuristic search algorithm to
find a set of PRT configurations to make a faulty mesh-
based communication network routing connected. The
algorithm considers the faults in the communication links,
the switch ports, the PRT entries and the routing logics.
The algorithm uses the heuristic of imposing constraints on
the possible values of PRT entries. The constraints are
obtained through considering local effects of the failures.
The emphasis is on the speed of the algorithm because
typically it should run during IC testing process to find a
distinct configuration for each faulty IC. To the best of our
knowledge, no fast algorithm has been previously proposed
for this purpose.

Because of the local nature of the constraints, the algo-
rithm can not globally guarantee that every generated con-
figuration is valid and thus a check should be conducted to
ensure that a path exists between any possible source and
destination pair. However, as the results indicate, the re-
quired number of final complete checks is in most cases
very small, if the network is routing connectable.

3.2. Link Failures
When a packet arrives at a switch, either it is destined

for the attached processing element or it should be routed
using one of the four system ports. In what follows, we use
L, R, D and U to indicate moving in left, right, down or up
directions respectively. The decision of where to route the
packet is based on the result of address comparison be-
tween current switch and the destination switch.

Consider a packet which is currently at a switch ad-
dressed (xcur, ycur) and is destined for switch (xdst, ydst). We
define the distance of the switches as

dist(cur, dst) = (| xdst - xcur | + | ydst - ycur |)

This distance is the minimum number of hops that the
packet should traverse until it reaches its destination. If a
routing algorithm routes a packet in such a way that its
distance from the destination switch decreases with each
move, the algorithm will be live-lock free. The live-lock
refers to the situation in which a packet will not reach its
destination, although it never gets blocked permanently
 [11]. A live-locked packet will visit a switch twice and this
cannot happen with a decreasing sequence of distances.
The conventional XY routing algorithm has this property
and thus is live-lock free. We call every move that de-
creases the distance of packet from its destination a posi-
tive move. Otherwise, we call it a negative move. In mesh-
based networks, such moves will inevitably increase the
distance.

Sometimes there are multiple positive moves for a
packet. For example, if the destination is both to left and
above the current switch, taking either direction will be a
positive move. In this case, the chosen direction depends
on the routing table of the current switch. An MBR-based
routing table has one entry for every possible combination
of positive moves, as shown in Fig. 1. The contents of this
table indicate the relative priority of moving in different
directions. For example, if in the entry corresponding to
positive moves in up and left directions, (Lx Ly) in Fig. 1,
the port identifier of the left port is given, then the priority
of moving in the left direction is more than upward move.
We use the "<" operator to show the priority of move-
ments. In this case, we write U < L.

Reconfiguration Procedure. When a node becomes
faulty, it will need some help from one of the neighboring
nodes (helping node) to route the packets. Since the switch
with a faulty link might be forced to perform a negative
move, the distance may increase and if the helping node
does not have its priorities properly set, it might return the
packet to the original switch and cause live-lock. Hence, it
would be necessary to put some constraints on the possible
priority combinations that the helping node can use. As
indicated before, these constraints are based on local con-
siderations and can just guarantee routing-connectivity in
absence of other failures in the network

An example with one faulty link. To demonstrate our
technique, Fig. 2(b) shows a mesh structure with one bro-
ken link between nodes E and F. Since the EF link is
faulty, Node E can select one of its two adjacent nodes in
the other dimension (i.e., B and H) as the helping node. In
this algorithm we do not consider the neighbor in the same
dimension as the faulty link (D, in this case) as a possible
helping node, because this will necessitate non-local con-
straint assignments and will complicate the search process
greatly. Suppose that we choose node B as the helping
node. This will impose some restrictions on the routing
table of B to prevent live-lock situations. Suppose node E
has a packet destined for node F. Since the EF link is
faulty, E will send the packet to B, instead. Now, node B
has a packet that should move both right and down. If, in
routing table of B, down moves have a higher priority than

IEEE EWDTS, Yerevan, September 7-10, 2007 413

right moves, B will send the packet back to E and will
cause a live-lock. Thus, for B, the priority of the down
move should be less than that of the right move, or D < R.
This is a Hard Constraint (HC) for B, i.e., it must be met to
have a live-lock free routing.

When we consider all the possible faulty links and ex-
tract all the required constraints, it might be the case that
for a switch, the constraints are conflicting. For example, a
switch might have both L < R and R < L constraints. Obvi-
ously, these are conflicting constraints and cannot be satis-
fied simultaneously. Suppose that in our example, we first
choose B as the helping node of E and after considering
other nodes, we get trapped in a conflicting situation. It
might be the case that this conflict has happened because
of choosing B as the helping node. Hence, we should now
check the alternative choice and test the selection of H
instead of B as the helping node. Thus our algorithm has a
backtracking nature and whenever it encounters some con-
flicts, it backtracks to the last point where it had an alterna-
tive choice and tests that choice.

Moreover, we can use another constraint type, called
Soft Constraint (SC) to reduce the average path lengths.
Suppose that in Fig. 2(b) E is helped by node B to route in
the right direction. It is better to force switch E to first
route the packets using its non-faulty links (up, left and
down) if it is a positive move. This means that switch E
will use the helping node B to route when no other choice
exists. Thus we consider the following SCs for node E:
{R < U, R < D}. R < L is a useless constraint because
moves to right and left are exclusive and cannot happen at
the same time. As another example, Fig. 2(c) shows a net-
work with four faulty links. Figure 2(d) shows the assigned
hard and soft constraints for each node in the network of
Fig. 2(c). The nodes missing in the table have no con-
straints. Figure 3(b) shows the constraints that will be con-
sidered for each faulty output link of node A in Fig. 3(a).
For example, the first row indicates that if the upward link
is faulty, one of the two constraints “L < U on node C” or
“R < U on node E” will be considered. The choice among
the two depends on the chosen helper node, i.e., if the node
C was chosen as the helper, L < U will be used, otherwise,
were the node E chosen as the helper, R < U will be used.

3.3. Switch failures
In addition to the link failures, physical failures might

occur in the ports, the routing logic and/or the routing table
of the switches. Next, we will discuss the reconfiguration
method in presence of such failures.

Port failures. We model port failures with link failures.
Suppose that the right output port of switch E, in Fig. 2(b),
becomes faulty. This condition implies that the correspond-
ing link (i.e., EF) cannot be used. Thus, we can assume that
EF link is a faulty link. Since this imitates the effect of the
faulty output port, we call the added failure a Virtual Link
Failure (VLF). Now, consider a physical fault in the right
input port of switch E. In this case switch F should be
forced not to use its FE link. Consequently, a new VLF
should be added to the failure set to indicate the invalidity
of FE link.

Routing table failure. Each of the nine entries in a
routing table can be affected by a physical defect. In these
cases, we consider a proper combination of VLFs and rout-
ing constraints (on neighboring nodes) to prevent packets
which might use this entry from reaching the affected
node. These VLFs and constraints are again based on local
considerations and can just guarantee routing-connectivity
in absence of other failures in the network. Figure 3(c)
summarizes the combination used for each faulty entry.

Router logic failure. When a fault occurs in the routing
logic, the switch will not be able to route the received
packets. Thus we should omit this node from the mesh
structure and mark all of its outgoing and ingoing links as
faulty, as shown in Fig. 3(c).

3.4. Reconfiguration Algorithm
Figure 4 shows the reconfiguration algorithm.

CONFNETWORK() routine accepts three lists as its input.
prt_failure_set containts the list of faulty routing table
entries. router_failuer_set contains the switches with
faulty routing logics and link_failure_set is the list of
faulty links and switch ports. CONFNETWORK() first con-
siders the constraints and VLFs imposed by faulty PRT
entries and faulty routing logics (according to Fig. 3(c))
and then calls recursive CONFFAILURES() to configure the
network for link failures. The recursive CONFFAILURES()
routine has two inputs: the set of faulty links that have not
been handled yet, and the constraints resulting from han-

A B C

D E F

G H I

X
X

XX

X
X

a

A B C

D E F

G H I

X

A B C

D E F

G H I

X
X

XX

Node Hard Constraints Soft Constraints
B D < R D < L
C D < L -
D R < D R < U
E - R < U, D < L
F - L < U, L < D
G R < U -
H - U < L, U < R

(a) (b) (c) (d)
Figure 2. (a) a network which is not routing connectable using MBR-based routing tables (b) a network with one faulty

link (c) a network with four faulty links (d) routing constraints in network of (c)

414 IEEE EWDTS, Yerevan, September 7-10, 2007

dling previous faults. It selects one faulty link from the list
and, one by one, examines all possible helping nodes for
the node affected by the faulty link. It repeats this process
until there remains no faulty link in the list, i.e., all the
faults are handled, or at some point, the set of constraints
could not be satisfied. In the former case, it checks all the
routing table configurations that satisfy the constraints. If a
configuration results in a routing connected network, it will
be returned as the result. Otherwise, the algorithm will
backtrack to the point of the last choice. In the latter case,
the algorithm will consider alternative helping nodes for
the node affected by current faulty link. If there is no un-
checked alternative, current invocation of CONFFAILURES()
returns NULL to indicate failure. If the first invocation
returns NULL then the algorithm has failed to find a live-
lock free configuration.

4. Experimental Result
To assess the proposed technique, we considered a 4 by

4 mesh network. This network has 16 nodes and 48 unidi-
rectional links. Table 1 shows the results for 15 randomly
generated faulty networks. Examples 1 to 6 have 4 to 16
unidirectional faulty links. Examples 7 to 15 include a
combination of faults on links, PRT entries and routing
logics. In TABLE I, the second to fourth columns give the
number of faulty links, faulty PRT entries and faulty rout-
ing logics, respectively. The fifth column gives the number
of network nodes that can still be used as a source or desti-
nation of the packets. Note that when all the incoming or
outgoing links of a switch becomes faulty or faults happen
in the PRT or the routing logic of a switch, that node can
no longer be used as a packet source or destination.

Since the most time consuming part of the algorithm is
the final routing-connectivity check, in TESTROUTING-
CONNECTIVITY() routine, it is of utmost importance to re-
duce the number of times that this routine should be called.
As indicated before, for the blind exhaustive search, this
check should take place 2256 times for a 4 by 4 network.
The sixth column of TABLE I shows the number of the per-
formed checks that in all cases are very small compared to
that of the exhaustive search. The last two columns provide
the average path length and link load under the uniform
traffic. Load of a particular link indicates the number of
different (SRC, DST) pair of nodes whose packets should
traverse that link The row indicated with XY in the table
gives the performance parameters for a network with no
faulty components in which all the routing tables are con-
figured according to XY routing mechanism. The values in
parentheses are normalized with regard to the correspond-
ing values of non-faulty XY network. In case of networks
with less usable nodes, the obtained average value might
be less than that of the XY network because of the lighter
traffic.

5. Conclusion
In this paper, we have considered the problem of faulty

communication components (i.e., faulty communication
links, faulty ports in the switches, faulty router logics and
faulty routing tables) in NoCs and have proposed a heuris-
tic method for reconfiguring the routing mechanism in
order to bypass the faulty elements. This method is based
on using network switches with programmable routing
tables. The experimental results show that the algorithm
could, with a reasonable complexity, reconfigure the faulty
networks to achieve acceptable performance parameters
with regard to non-faulty networks using XY routing
mechanism.

6. References
[1] Semiconductor Industry Association, International

Technology Roadmap for Semiconductors, World
Semiconductor Council, Edition 2005, 2005.

[2] R. Saleh et al., "System-on-Chip: Reuse and Integration,"
Proc. IEEE, vol. 94, no. 6, pp 1050-1069, Jun 2006.

[3] L. Benini and G. De Micheli, "Networks on chips: a new
SoC paradigm," IEEE Computer, vol. 35, no. 1, pp. 70-
78, Jan. 2002.

[4] P.P. Pande et al., "Design, Synthesis, and Test of
Network On Chips," IEEE Des. Test. Comput., vol 22.
no. 5, pp. 404-413, Sept./Oct. 2005.

[5] S. Kumar et al., "A Network on Chip Architecture and
Design Methodology," in Proc. ISVLSI'02, pp. 117-124,
2002.

[6] P. P. Pande et al., "Performance Evaluation and Design
Trade-Offs for Network-on-Chip Interconnect
Architectures," IEEE Trans. Comput., vol. 54, no. 8, pp.
1025-1040, Aug. 2002 .

[7] R. Marculescu, "Networks-on-Chip: The Quest for On-
Chip Fault-Tolerant Communication", in proc.
ISVLSI'03, pp. 8-12, Feb. 2003.

[8] M. Yang, T. Li, Y. Jiang, and Y. Yang, "Fault-Tolerant
Routing Schemes in RDT(2,2,1)/a-Based Interconnection
Network for Networks-on-Chip Designs," in Proc.
ISPAN'05, pp. 1-6, Dec. 2005.

[9] N. Honarmand, A.Shahabi, H. Sohofi, M. Abbaspour,
and Z. Navabi, "High Level Synthesis of Degradable
ASICs Using Virtual Binding," in Proc. VTS'07, pp. 311-
317, May 2007.

[10] C. Grecu et al., "On-line Fault Detection and Location for
NoC interconnects, " in Proc. IOLTS'06, pp. 145-150,
2006.

[11] J. Duato, S. Yalamanchili, and L. Ni, Interconnection
Networks—An Engineering Approach, Morgan
Kaufmann, 2002.

IEEE EWDTS, Yerevan, September 7-10, 2007 415

Details Imposed Constraints
Up (1) C: L < U or E: R < U

Down (5) C: L < D or E: R < D
Left (4) B: D < L or D: U < L

Link and Port Failure

Right (8) B: D < R or D: U < R

3
2

4

1
8

7
5 6

B

E A C

D

(b) Constraints resulting from each faulty output link of Node A (a) Nodes and Links used in Tables 3(b) and 3(c)

Details Imposed Constraints Imposed Virtual Link Failures (VLF)
GxGy B: D < R and E: R < D -
GxEy B: D < R and D: U < R 3
GxLy D: U < R and E : R < U -
ExGy C: L < D and E: R < D 2
ExEy - -
ExLy C : L < U and E: R < U 6
LxGy B : D < L and C: L < D -
LxEy B: D < L and D: U < L 7

Routing Table Entry
Failure

LxLy C: L < U and D: U < L -

Router Logic Failure - - 1, 2, 3, 4, 5, 6, 7, 8

(c) Constraints and Virtual Link Failures resulting from faulty PRT entries and routing logic
Figure 3. Constraints and Virtual Link Failures that should be considered for different faulty network elements

CONFNETWORK(prt_failture_set, router_failuer_set,
link_failure_set)
begin
 current_constraints = the constraints imposed by
prt_failure_set;
 link_failure_set += VLFs imposed by prt_failure_set +
 VLFs imposed by router_failure_set;
 if COULDBESATISFIED(current_constraints) then
 return CONFFAILURES (link_failture_set, current_constraints);
 else
 return NULL;
 end if;
end

CONFFAILURES (link_failure_set, current_constraints)
begin
 if ISEMPTY(failure_set) then
 for each configuration conf satisfying all the constraints
 TESTROUTINGCONNECTIVITY(conf)
 if the test succeeds then return conf; end if;
 end for;
 return NULL;
 else
 f = FIRST(link_failure_set); n = node affected by f;
 for each possible helping node h for n
 new_constraints = current_constraints +
 {constraints from using h as the helper};
 if COULDBESATISFIED(new_constraints) then
 conf = CONFFAILURES (link_failure_set -f, new_constraints);
 if conf ≠ NULL then return conf; end if;
 end if;
 end for;
 return NULL;
 end if;
end

Figure 4. Reconfiguration algorithm for MBR-based routing tables

 Faulty

Links
Faulty
Entries

Faulty
Routers

Usable
Nodes

Required
Checks

Average Path
Length

Average Link
Load

XY 0 0 0 16 1 2.66 13.3
EX1 4 0 0 16 1 2.97(1.12) 16.18(1.22)
EX2 6 0 0 16 1 3.1(1.17) 17.62(1.32)
EX3 8 0 0 16 1 3.13(1.18) 18.8(1.41)
EX4 10 0 0 16 25 3.4(1.28) 21.52(1.62)
EX5 13 0 0 16 49 3.5(1.32) 24.14(1.82)
EX6 16 0 0 16 97 3.7(1.39) 28(2.11)
EX7 5 2 0 14 1 2.99(1.12) 13.95(1.05)
EX8 5 6 0 11 28 2.75(1.03) 9.44(0.71)
EX9 8 1 0 15 1 3.23(1.21) 17.84(1.34)
EX10 8 4 0 12 25 3.6(1.35) 12.8(0.96)
EX11 6 0 1 15 1 3.5(1.32) 20.44(1.54)
EX12 10 0 1 15 25 3.65(1.37) 23.27(1.75)
EX13 5 0 2 14 385 3.97(1.49) 14.46(1.09)
EX14 5 5 1 11 49 3.42(1.29) 14.46(1.09)
EX15 6 2 1 14 73 3.44(1.29) 18.41(1.38)

TABLE I. EXPERIMENTAL RESULTS

416 IEEE EWDTS, Yerevan, September 7-10, 2007

