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Abstract 

 
 The decreasing manufacturing yield of integrated cir-

cuits, as a result of rising complexity and decreased fea-
ture size, and the emergence of NoC-based design tech-
niques, has necessitated the search for network reconfigu-
ration techniques for reusing NoCs with faulty compo-
nents. In this paper, we propose a new method to cope with 
the problem of faulty components in mesh-based on-chip 
networks. The method is based on using programmable 
routing tables in network switches. We propose a heuristic 
algorithm to search for a valid configuration for these 
routing tables when several physical faults occur in com-
munication links, switch ports, routing tables and routing 
logics. The algorithm considerably reduces the required 
search effort as compared to the exhaustive search method. 

1. Introduction 
By the end of the decade, the 45-nm transistors operat-

ing below 0.7 volt will make it possible to put 4 billion 
transistors running at 15 GHz on a single chip  [1]. System-
on-chip (SoC) design methodology  [2] has been proposed 
as a way to manage the increased complexity of these ICs. 
In this technique, pre-designed and pre-verified Intellectual 
Property (IP) cores are integrated on a single chip. Com-
munication between the IP cores is one of the most impor-
tant challenges in the SoC design methodology. Networks 
on Chip (NoC),  [3] and  [4], is an emerging paradigm 
which addresses this problem. A typical NoC consists of 
four major components: Processing Elements (PEs), Net-
work Interface Units (NIUs), Switches and Physical Links. 
PEs do the actual processing while the others constitute the 
communication fabric. Several NoC architectures and their 
implementation details have been presented in  [5] and  [6]. 

With the emergence of nano-scale feature sizes, the 
produced ICs become more and more susceptible to manu-
facturing faults and the process yield decreases  [1]. Be-
cause manufacturing faults tend to be local and affect a 
limited area of the die, it is possible (and very desirable) to 
find methods to make such faulty dies reusable. Such fail-
ures can occur in PEs and/or in communication fabric, i.e., 
switches and communication links. One possible method to 

work around the permanent faults is to use fault tolerant 
architectures,  [7] and  [8]. Such techniques tend to intro-
duce some redundancies into the circuit in order to cope 
with faulty elements and thus result in less-than-full hard-
ware utilization. Reconfiguring the faulty IC to avoid using 
the faulty modules (PEs, switches or links) and get the 
work done using the remaining non-faulty ones is another 
approach, that is usually referred to as degradability  [9]. 
The reconfigured circuit is likely to have a degraded per-
formance, compared to the non-faulty one, because of the 
decreased number of available resources. Generally, recon-
figuration-based methods imply a design and manufactur-
ing flow including the following steps: First, at the design 
stage, special algorithms should be used which result in 
reconfigurable circuits. Then, after the IC was built, diag-
nosis techniques  [10] should be used to detect the faulty 
components of the circuit. Then, based on the obtained 
fault pattern, a proper configuration, which bypasses the 
faulty elements, should be chosen and programmed into the 
circuit. Widely-used built-in test provisions such as JTAG 
or scan chains can be used for this purpose.  

In this paper, we focus on static reconfiguration-based 
methods for recovering a faulty communication fabric in 
networks with mesh  [5] topology. Mesh-based networks 
are appearing as a de facto standard in the NoC realm be-
cause of their regular and efficient layout and simple rout-
ing mechanism. In Section  2, we introduce a simple and 
efficient implementation of routing logic in Mesh-based 
network switches. In Section  3, we define the problem and 
provide the proposed reconfiguration algorithm. Section  4 
provides the experimental results and Section  5 concludes 
the paper. 

2.  Proposed routing mechanism 
In an NoC, switches are responsible for routing the 

packets between nodes. Each switch has a set of bidirec-
tional ports through which it is connected to neighboring 
switches or PEs. It also contains a router to define a path 
between input and output ports, buffers to store intermedi-
ate data and an arbiter to grant access to a given port when 
multiple input requests arrive in parallel. 
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One important aspect of the switch design is the imple-
mentation of the routing algorithm. Routing algorithm de-
termines the path that a packet should traverse to reach its 
destination. Typically, the whole path is determined either 
at the source node (source routing) or on a node-by-node 
basis while the packet traverses the network (distributed 
routing)  [11]. Also, the routing algorithm might be adap-
tive or deterministic  [11]. In the adaptive routing, the path 
taken between a source and destination pair might vary 
depending on dynamic network parameters like link con-
gestion and power consumption while in the deterministic 
routing the path remains the same. Simple and efficient 
hardware implementation of deterministic and distributed 
routing for mesh networks is likely to result in their accep-
tance as the de facto standard for routing in the NoC realm. 
Hence, in this work, we focus on these algorithms. 

In NoC switches, the routing algorithm can be imple-
mented as a hardwired module or as a Programmable Rout-
ing Table (PRT). In the former case, no post-manufacturing 
programming is required but the switch cannot be changed 
to cope with the physical failures. Thus, the chip will be-
come unusable whenever some components become faulty 
unless fault-tolerance provisions have been made into the 
circuit. But, in the latter case, the switches can be reconfig-
ured to bypass the faulty elements. This approach, inevita-
bly, adds a PRT programming step to the manufacturing 
process.   

The simplest way to implement a PRT is to use a 
lookup table with as many entries as the number of nodes 
in the network. We call this technique Per-Address Routing 
(PAR). The index of the table will be the destination ad-
dress of a packet and each entry will contain the identifier 
of the proper output port for the given destination address. 
But PAR is not the only possible, or even the best, imple-
mentation of PRT. In fact, PAR suffers from two major 
drawbacks: (1) The size of the lookup table will grow line-
arly with the number of NoC nodes. Besides the area over-
head, since table lookup should take place at least once for 
every received packet, the large size of the table and the 
resulting delay of lookup operation will decrease the 
throughput of the switch. (2) PAR is not amenable to net-
work scaling and design reuse because the switch cannot 
be used in networks with more nodes than the number of 
lookup table entries, and thus redesign will be needed. 

In mesh-based networks, the address of a node is a pair 
(x,y) which is the coordinates of the node in the mesh. Each 
mesh switch, in general, has five ports: one attached to the 
local PE (local port) and the other four to the neighboring 
switches (system ports). When a packet arrives, it should 
be delivered to the attached PE, through the local port, if it 
is destined for that node. Otherwise, one of the system 
ports (Left, Right, Up and Down) should be selected ac-
cording to the destination address. A simple dimension 
routing algorithm, called XY  [11], has been proposed for 
the mesh topology. In this algorithm, a packet is first 
routed in X direction (left or right) and then in the Y direc-
tion (up or down). Based on this algorithm, Fig. 1 shows 
the proposed routing mechanism. Two small comparators 
compare the x- and y-coordinates of the current node with 
those of the destination. The outputs of each comparator 
can assume three different one-hot coded states (G for 
greater, E for equal and L for less). Thus, we can have 9 
different situations for the combination of comparator out-
puts. An encoder will generate a 4-bit signal indicating 
which of these 9 situations has occurred. The output of the 
encoder will be used to index a 9-entry, programmable 
lookup table. Each entry of the lookup table contains a port 
identifier to indicate one of the five ports that should be 
used. Unlike PAR-based routers, this routing hardware has 
a small and fixed structure that does not depend on the 
number of nodes in the network. Throughout this paper, we 
refer to this method as Mesh-Based Routing (MBR) be-
cause it is tailored to the mesh topologies. 

3. Programming PRTs Under Failures 
In an NoC, physical faults might occur in the processing 

elements, communication links and switches components, 
i.e., ports, routing table and router logic (comparators and 
the encoder in Fig. 1). To provide degradability in the 
presence of faulty PEs, techniques like Virtual Binding  [9] 
can be used. In this work, we focus on the degradability in 
presence of faulty communication fabric. The following 
text describes an algorithm that tries to find a proper set of 
MBR-based PRT configurations to compensate for the 
effects of link and switch failures. To increase the general-
ity of the algorithm, we consider two unidirectional links 
between each two neighboring nodes and assume that 
faults might affect each of these links separately. Also, we 
assume that faults might affect each input and output port 
of a switch independently. In addition, Faults in the indi-
vidual entries of the routing table are considered sepa-
rately.  

3.1.  Structural vs. Routing Connectivity 
The network topology could be considered as a graph 

with switches being its vertices and links being its edges. If 
this graph is connected, then the network will be structur-
ally connected. We say that the network is routing con-
nected if for every source and destination (SRC, DST) pair 
of nodes, a packet originated in SRC can be routed to reach 
DST. Whether this is possible or not depends on the routing 
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Figure 1. Mesh-based routing mechanism 
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table configuration of the nodes that the packet visits. Im-
proper configurations might prevent the packet from reach-
ing its destination. We use the term valid configuration to 
refer to configurations resulting in a routing connected 
network.  

We call a network routing connectable if there is a set 
of PRT configurations to make the network routing-
connected. It is possible for a network of MBR-based 
PRTs to be structurally connected but not routing-
connectable. Figure 2(a) shows an example of such a net-
work. In this figure, the crosses indicate broken links. No 
configuration can be found for the PRT of node B because 
when B has a packet destined for E, it should send it using 
BE link and when it has a packet destined for H it should 
not use BE link. Thus, there is no feasible port identifier 
for (Ex,Gy) entry of B's routing table.  

One possible method to find a proper configuration is 
the exhaustive search. In this method we should consider 
all the possible network configurations and check each one 
to see whether it creates a routing connected network. This 
is not a feasible approach because, for example, in a small 
4 by 4 network, there are 16 nodes, 8 PRT entries per node 
that might use the system ports and 4 possible ports per 
entry, resulting in 48*16 or 2256 different configurations.  

In this work, we propose a heuristic search algorithm to 
find a set of PRT configurations to make a faulty mesh-
based communication network routing connected. The 
algorithm considers the faults in the communication links, 
the switch ports, the PRT entries and the routing logics. 
The algorithm uses the heuristic of imposing constraints on 
the possible values of PRT entries. The constraints are 
obtained through considering local effects of the failures. 
The emphasis is on the speed of the algorithm because 
typically it should run during IC testing process to find a 
distinct configuration for each faulty IC. To the best of our 
knowledge, no fast algorithm has been previously proposed 
for this purpose.  

Because of the local nature of the constraints, the algo-
rithm can not globally guarantee that every generated con-
figuration is valid and thus a check should be conducted to 
ensure that a path exists between any possible source and 
destination pair. However, as the results indicate, the re-
quired number of final complete checks is in most cases 
very small, if the network is routing connectable. 

3.2.  Link Failures 
When a packet arrives at a switch, either it is destined 

for the attached processing element or it should be routed 
using one of the four system ports. In what follows, we use 
L, R, D and U to indicate moving in left, right, down or up 
directions respectively. The decision of where to route the 
packet is based on the result of address comparison be-
tween current switch and the destination switch.  

Consider a packet which is currently at a switch ad-
dressed (xcur, ycur) and is destined for switch (xdst, ydst). We 
define the distance of the switches as 

dist(cur, dst) = ( | xdst - xcur | + | ydst - ycur | ) 

This distance is the minimum number of hops that the 
packet should traverse until it reaches its destination. If a 
routing algorithm routes a packet in such a way that its 
distance from the destination switch decreases with each 
move, the algorithm will be live-lock free. The live-lock 
refers to the situation in which a packet will not reach its 
destination, although it never gets blocked permanently 
 [11]. A live-locked packet will visit a switch twice and this 
cannot happen with a decreasing sequence of distances. 
The conventional XY routing algorithm has this property 
and thus is live-lock free. We call every move that de-
creases the distance of packet from its destination a posi-
tive move. Otherwise, we call it a negative move. In mesh-
based networks, such moves will inevitably increase the 
distance. 

Sometimes there are multiple positive moves for a 
packet. For example, if the destination is both to left and 
above the current switch, taking either direction will be a 
positive move. In this case, the chosen direction depends 
on the routing table of the current switch. An MBR-based 
routing table has one entry for every possible combination 
of positive moves, as shown in Fig. 1. The contents of this 
table indicate the relative priority of moving in different 
directions. For example, if in the entry corresponding to 
positive moves in up and left directions, (Lx Ly) in Fig. 1, 
the port identifier of the left port is given, then the priority 
of moving in the left direction is more than upward move. 
We use the "<" operator to show the priority of move-
ments. In this case, we write U < L.  

Reconfiguration Procedure. When a node becomes 
faulty, it will need some help from one of the neighboring 
nodes (helping node) to route the packets. Since the switch 
with a faulty link might be forced to perform a negative 
move, the distance may increase and if the helping node 
does not have its priorities properly set, it might return the 
packet to the original switch and cause live-lock. Hence, it 
would be necessary to put some constraints on the possible 
priority combinations that the helping node can use. As 
indicated before, these constraints are based on local con-
siderations and can just guarantee routing-connectivity in 
absence of other failures in the network 

An example with one faulty link. To demonstrate our 
technique, Fig. 2(b) shows a mesh structure with one bro-
ken link between nodes E and F. Since the EF link is 
faulty, Node E can select one of its two adjacent nodes in 
the other dimension (i.e., B and H) as the helping node. In 
this algorithm we do not consider the neighbor in the same 
dimension as the faulty link (D, in this case) as a possible 
helping node, because this will necessitate non-local con-
straint assignments and will complicate the search process 
greatly. Suppose that we choose node B as the helping 
node. This will impose some restrictions on the routing 
table of B to prevent live-lock situations. Suppose node E 
has a packet destined for node F. Since the EF link is 
faulty, E will send the packet to B, instead. Now, node B 
has a packet that should move both right and down. If, in 
routing table of B, down moves have a higher priority than 
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right moves, B will send the packet back to E and will 
cause a live-lock. Thus, for B, the priority of the down 
move should be less than that of the right move, or D < R. 
This is a Hard Constraint (HC) for B, i.e., it must be met to 
have a live-lock free routing. 

When we consider all the possible faulty links and ex-
tract all the required constraints, it might be the case that 
for a switch, the constraints are conflicting. For example, a 
switch might have both L < R and R < L constraints. Obvi-
ously, these are conflicting constraints and cannot be satis-
fied simultaneously. Suppose that in our example, we first 
choose B as the helping node of E and after considering 
other nodes, we get trapped in a conflicting situation. It 
might be the case that this conflict has happened because 
of choosing B as the helping node. Hence, we should now 
check the alternative choice and test the selection of H 
instead of B as the helping node. Thus our algorithm has a 
backtracking nature and whenever it encounters some con-
flicts, it backtracks to the last point where it had an alterna-
tive choice and tests that choice. 

Moreover, we can use another constraint type, called 
Soft Constraint (SC) to reduce the average path lengths. 
Suppose that in Fig. 2(b) E is helped by node B to route in 
the right direction. It is better to force switch E to first 
route the packets using its non-faulty links (up, left and 
down) if it is a positive move. This means that switch E 
will use the helping node B to route when no other choice 
exists. Thus we consider the following SCs for node E: 
{R < U, R < D}. R < L is a useless constraint because 
moves to right and left are exclusive and cannot happen at 
the same time. As another example, Fig. 2(c) shows a net-
work with four faulty links. Figure 2(d) shows the assigned 
hard and soft constraints for each node in the network of 
Fig. 2(c). The nodes missing in the table have no con-
straints. Figure 3(b) shows the constraints that will be con-
sidered for each faulty output link of node A in Fig. 3(a). 
For example, the first row indicates that if the upward link 
is faulty, one of the two constraints “L < U on node C” or 
“R < U on node E” will be considered. The choice among 
the two depends on the chosen helper node, i.e., if the node 
C was chosen as the helper, L < U will be used, otherwise, 
were the node E chosen as the helper, R < U will be used. 

3.3.  Switch failures 
In addition to the link failures, physical failures might 

occur in the ports, the routing logic and/or the routing table 
of the switches. Next, we will discuss the reconfiguration 
method in presence of such failures. 

Port failures. We model port failures with link failures. 
Suppose that the right output port of switch E, in Fig. 2(b), 
becomes faulty. This condition implies that the correspond-
ing link (i.e., EF) cannot be used. Thus, we can assume that 
EF link is a faulty link. Since this imitates the effect of the 
faulty output port, we call the added failure a Virtual Link 
Failure (VLF). Now, consider a physical fault in the right 
input port of switch E. In this case switch F should be 
forced not to use its FE link. Consequently, a new VLF 
should be added to the failure set to indicate the invalidity 
of FE link. 

Routing table failure. Each of the nine entries in a 
routing table can be affected by a physical defect. In these 
cases, we consider a proper combination of VLFs and rout-
ing constraints (on neighboring nodes) to prevent packets 
which might use this entry from reaching the affected 
node. These VLFs and constraints are again based on local 
considerations and can just guarantee routing-connectivity 
in absence of other failures in the network. Figure 3(c) 
summarizes the combination used for each faulty entry.  

Router logic failure. When a fault occurs in the routing 
logic, the switch will not be able to route the received 
packets. Thus we should omit this node from the mesh 
structure and mark all of its outgoing and ingoing links as 
faulty, as shown in Fig. 3(c). 

3.4.  Reconfiguration Algorithm 
Figure 4 shows the reconfiguration algorithm. 

CONFNETWORK() routine accepts three lists as its input. 
prt_failure_set containts the list of faulty routing table 
entries. router_failuer_set contains the switches with 
faulty routing logics and link_failure_set is the list of 
faulty links and switch ports. CONFNETWORK() first con-
siders the constraints and VLFs imposed by faulty PRT 
entries and faulty routing logics (according to Fig. 3(c)) 
and then calls recursive CONFFAILURES() to configure the 
network for link failures. The recursive CONFFAILURES() 
routine has two inputs: the set of faulty links that have not 
been handled yet, and the constraints resulting from han-
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dling previous faults. It selects one faulty link from the list 
and, one by one, examines all possible helping nodes for 
the node affected by the faulty link. It repeats this process 
until there remains no faulty link in the list, i.e., all the 
faults are handled, or at some point, the set of constraints 
could not be satisfied. In the former case, it checks all the 
routing table configurations that satisfy the constraints. If a 
configuration results in a routing connected network, it will 
be returned as the result. Otherwise, the algorithm will 
backtrack to the point of the last choice. In the latter case, 
the algorithm will consider alternative helping nodes for 
the node affected by current faulty link. If there is no un-
checked alternative, current invocation of CONFFAILURES() 
returns NULL to indicate failure. If the first invocation 
returns NULL then the algorithm has failed to find a live-
lock free configuration. 

4. Experimental Result 
To assess the proposed technique, we considered a 4 by 

4 mesh network. This network has 16 nodes and 48 unidi-
rectional links. Table 1 shows the results for 15 randomly 
generated faulty networks. Examples 1 to 6 have 4 to 16 
unidirectional faulty links. Examples 7 to 15 include a 
combination of faults on links, PRT entries and routing 
logics. In TABLE I, the second to fourth columns give the 
number of faulty links, faulty PRT entries and faulty rout-
ing logics, respectively. The fifth column gives the number 
of network nodes that can still be used as a source or desti-
nation of the packets. Note that when all the incoming or 
outgoing links of a switch becomes faulty or faults happen 
in the PRT or the routing logic of a switch, that node can 
no longer be used as a packet source or destination.  

Since the most time consuming part of the algorithm is 
the final routing-connectivity check, in TESTROUTING-
CONNECTIVITY() routine, it is of utmost importance to re-
duce the number of times that this routine should be called. 
As indicated before, for the blind exhaustive search, this 
check should take place 2256 times for a 4 by 4 network. 
The sixth column of TABLE I shows the number of the per-
formed checks that in all cases are very small compared to 
that of the exhaustive search. The last two columns provide 
the average path length and link load under the uniform 
traffic. Load of a particular link indicates the number of 
different (SRC, DST) pair of nodes whose packets should 
traverse that link The row indicated with XY in the table 
gives the performance parameters for a network with no 
faulty components in which all the routing tables are con-
figured according to XY routing mechanism. The values in 
parentheses are normalized with regard to the correspond-
ing values of non-faulty XY network. In case of networks 
with less usable nodes, the obtained average value might 
be less than that of the XY network because of the lighter 
traffic. 

5. Conclusion 
In this paper, we have considered the problem of faulty 

communication components (i.e., faulty communication 
links, faulty ports in the switches, faulty router logics and 
faulty routing tables) in NoCs and have proposed a heuris-
tic method for reconfiguring the routing mechanism in 
order to bypass the faulty elements. This method is based 
on using network switches with programmable routing 
tables. The experimental results show that the algorithm 
could, with a reasonable complexity, reconfigure the faulty 
networks to achieve acceptable performance parameters 
with regard to non-faulty networks using XY routing 
mechanism. 
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(b) Constraints resulting from each faulty output link of Node A (a) Nodes and Links used in Tables 3(b) and 3(c) 
 

Details Imposed Constraints Imposed Virtual Link Failures (VLF) 
GxGy B: D < R and E: R < D - 
GxEy B: D < R and D: U < R 3 
GxLy D: U < R and E : R < U - 
ExGy C: L < D and E: R < D 2 
ExEy - - 
ExLy C : L < U and E: R < U 6 
LxGy B : D < L and C: L < D  - 
LxEy B: D < L and D: U < L 7 

Routing Table Entry 
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LxLy C: L < U and D: U < L - 

Router Logic Failure - - 1, 2, 3, 4, 5, 6, 7, 8 

(c) Constraints and Virtual Link Failures resulting from faulty PRT entries and  routing logic 
Figure 3. Constraints and Virtual Link Failures that should be considered for different faulty network elements 

 

CONFNETWORK(prt_failture_set, router_failuer_set, 
link_failure_set) 
begin 
   current_constraints = the constraints imposed by 
prt_failure_set; 
   link_failure_set +=  VLFs imposed by prt_failure_set +  
      VLFs imposed by router_failure_set; 
   if COULDBESATISFIED(current_constraints) then 
      return CONFFAILURES (link_failture_set, current_constraints); 
   else 
      return NULL; 
   end if; 
end 
 
 

CONFFAILURES (link_failure_set, current_constraints)  
begin 
   if ISEMPTY(failure_set) then 
      for each configuration conf satisfying all the constraints  
         TESTROUTINGCONNECTIVITY(conf) 
         if the test succeeds then  return conf; end if; 
      end for; 
      return NULL;  
   else 
      f = FIRST(link_failure_set); n = node affected by f; 
      for each possible helping node h for n 
         new_constraints = current_constraints +  
               {constraints from using h as the helper}; 
         if COULDBESATISFIED(new_constraints) then 
            conf = CONFFAILURES (link_failure_set -f, new_constraints); 
            if conf ≠ NULL then  return conf; end if; 
         end if; 
      end for; 
      return NULL; 
   end if; 
end 

Figure 4. Reconfiguration algorithm for MBR-based routing tables 

 
 Faulty 

Links 
Faulty 
Entries 

Faulty 
Routers 

Usable 
Nodes 

Required 
Checks 

Average Path 
Length 

Average Link 
Load 

XY 0 0 0 16 1 2.66 13.3 
EX1 4 0 0 16 1 2.97(1.12) 16.18(1.22) 
EX2 6 0 0 16 1 3.1(1.17) 17.62(1.32) 
EX3 8 0 0 16 1 3.13(1.18) 18.8(1.41) 
EX4 10 0 0 16 25 3.4(1.28) 21.52(1.62) 
EX5 13 0 0 16 49 3.5(1.32) 24.14(1.82) 
EX6 16 0 0 16 97 3.7(1.39) 28(2.11) 
EX7 5 2 0 14 1 2.99(1.12) 13.95(1.05) 
EX8 5 6 0 11 28 2.75(1.03) 9.44(0.71) 
EX9 8 1 0 15 1 3.23(1.21) 17.84(1.34) 
EX10 8 4 0 12 25 3.6(1.35) 12.8(0.96) 
EX11 6 0 1 15 1 3.5(1.32) 20.44(1.54) 
EX12 10 0 1 15 25 3.65(1.37) 23.27(1.75) 
EX13 5 0 2 14 385 3.97(1.49) 14.46(1.09) 
EX14 5 5 1 11 49 3.42(1.29) 14.46(1.09) 
EX15 6 2 1 14 73 3.44(1.29) 18.41(1.38) 

 

 

TABLE I. EXPERIMENTAL RESULTS 
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