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Abstract— A data driven approach to design and optimization 
of low power combinational multipliers is presented. This 
technique depends on signal gating to avoid un-necessary 
computations and thus reduce the switching activity and power 
consumption of combinational multipliers. The proposed 
technique can be equally well applied to signed and unsigned 
multiplications. At the same time, it imposes reasonable area and 
delay overhead on the circuit. The benchmark data is extracted 
from typical DSP applications to show the efficiency of the 
proposed technique in the domain of DSP computations in which 
the low power computing is of rapidly increasing importance. 
The results show an average of 26% percent reduction in the 
switching activity and 22% area and 27% delay overhead, 
compared to combinational multipliers without this technique. 
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I.  INTRODUCTION (HEADING 1) 
In recent years, power consumption has become a critical 

design concern for many VLSI systems. Especially, it is an 
important bottleneck in portable battery-operated applications 
where the power consumption may be more important than 
speed and area. In CMOS technology, a great deal of power 
dissipation is caused by charging and discharging of the load 
capacitances. Therefore, it is crucial to minimize the number of 
signal transitions in circuits for a low power design [1]. 

Because of the frequent use of arithmetic units such as 
multipliers and adders and their high power consumption, 
many low-power techniques have been proposed to optimize 
these functional units in terms of power consumption (see, e.g., 
[2-5]). Among other computing systems, DSP applications 
make extensive use of multiply and accumulate computations. 
Therefore, the design and the implementation of power-
efficient arithmetic units, especially multipliers, is essential for 
the design of low-power DSP hardware [6]. 

Several power reduction techniques, in different levels of 
abstraction (from system and architecture levels to logic and 
circuit levels), have been proposed in literature. Some of these 
approaches, such as asynchronous multiplier architectures and 
split registers, use on-demand computation [2]. High level 
optimization techniques like optimization of encoding schemes 
(e.g., Booth encoding) [3], operand representation optimization 
[3], structure optimization of partial product reduction circuit 
[3], signal gating to deactivate unnecessary portions of a full-
precision multiplier [3], and the use of row and column 

bypassing techniques in parallel array multiplier [4] have also 
been proposed. In the circuit level, less dissipative logics such 
as CPL-TG for full adder block [5] is another low power 
multiplication technique. In DSP applications like digital filters 
and FFT blocks, which involve multiplication by a fixed set of 
coefficients, substantial research have been devoted to topics 
such as coefficient optimization [6], and applying Partially 
Guarded Computation concept to data dominated applications 
[1]. 

From one point of view, multipliers can be categorized to 
sequential and combinational ones. Sequential multipliers are 
attractive for their low area requirements. They, however, take 
more time to complete a multiplication operation compared to 
combinational ones. In this work, we propose a data-driven, 
signal-gating based technique for design and optimization of 
one class of combinational multipliers, called array multipliers 
[7]. The paper is organized as follows: We describe the 
proposed technique in Section II and the benchmark data and 
results in Section III, while the summary and conclusions are 
given in Section IV. 

II. PROPOSED TECHNIQUE 
Combinational multipliers are characterized with their low 

latency and high area requirements, compared to sequential 
multipliers. One of the most widely-used structures for 
combinational multipliers is the array multiplier which is 
especially attracting for its highly regular structure and lack of 
long wires [7]. In this class of multiplier, the multiplication is 
performed by consecutive addition of generated partial 
products. This multiplier is composed of an array of Carry-
Save Adder (CSA) rows, each one adding one of the partial 
products to the accumulated sum of the previous partial 
products and one final row of Carry-Propagation Adder (CPA) 
to convert the accumulated sum, which is stored in a redundant 
number system, to the binary system. More details on this kind 
of multiplier can be found elsewhere [7]. 

As stated above, every row of CSAs will add one of the 
partial products to the accumulated sum. Thus if one of the 
partial products is zero, then the corresponding CSA row will 
not change the accumulated sum. If all of the partial products 
starting from row r are zero, then all the corresponding CSA 
rows won't do any useful computation and the final result 
would be like that obtained up to position r. Thus, it would be 
reasonable if someone tries to "turn-off" those CSA rows to 
prevent unnecessary switching activities. 
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One of the commonly used techniques to prevent switching 
activity in a combinational circuit is Signal Gating [3]. In this 
technique the inputs of the combinational circuit are gated so 
that the glitches and value changes in the previous logic levels 
would not propagate to next ones. There are different gating 
elements such as latches and AND/OR gates (ANDing with '0' 
and ORing with '1' will prevent signal changes to propagate to 
the output of the gate). 

Using AND/OR gates have the drawback that, in this 
technique, gating may change the value of the gated signal 
(although just one time during every gating action) and thus 
may introduce unwanted switchings in the circuit. But it has the 
advantage of low area overhead. Using latches, on the other 
hand, may result in less switching activity while occupying 
more area. In this work we use latches for implementation 
purposes. 

In what follows, we will use A (or multiplicand) and B (or 
multiplier) for the first and second operands of a given 
multiplication, respectively. Thus, the i-th partial product of a 
multiplication operation is zero if i-th most significant bit of B 
is zero; otherwise it is equal to the A * 2i (i ≥ 0). Also, a Gating 
Boundary (GB) will refer to a CSA row whose inputs are gated 
using latches and a Gated Segment refers to a series of CSA 
rows between two consecutive GBs or between the last GB and 
the CPA row. 

One can use one or more GBs in his/her design, but some 
issues limit the maximum number of GBs that could be 
effectively used. When you decide to designate a CSA row as a 
GB, this implies that all the CSA rows below that point may be 
de-activated and thus the accumulated partial sum from that 
point should be transferable to the final CPA row to be 
converted to the binary number system. This means that you 
have to place a multiplexer with as many inputs as the number 
of GBs plus one at the input of the CPA row. 

But our experiments show that large multiplexers naturally 
see a great deal of switching activity inside them and cause 
much at their outputs. Thus the number of GBs should be kept 
to as minimum as possible to prevent the overhead of using 
multiplexers from diminishing all the benefits obtained through 
signal gating. 

The following section will demonstrate the design of a 
2-GB unsigned multiplier. Unsigned multiplier will be used as 
a building block (with minor modifications) in the Signed, 2's 
complement multiplier. 

A. Unsigned Multiplier Implementation 
Figure 1.  shows the structure of a 4×4 unsigned multiplier 

with 2 GBs placed at rows 1 and 3. For those full adders (FAs) 
placed at GBs, all the inputs of the FA are latched. The reason 
to latch all the inputs is that a switching on any input line may 
result in switching on the output lines, which in turn may 
propagate all the way down to the CPA row. 

Assume that there are two registers at the inputs of the 
multiplier, holding the values of A and B. For the following 
discussion, suppose that the registers are sensitive to the 
positive edge of the clock. To achieve the best result, the GB 
latch control signals should be available at the positive edge of 

the clock, when the new operands are going to appear at the 
multiplier inputs. Because, otherwise, the changed inputs 
would introduce switchings in those segments of the circuit that 
should be gated before the latches could de-activate those 
segments. These control signals should be computed and stored 
in the input registers together with the input operands. In this 
example the latch enable signal for GB1 is B[3] and that of 
GB0 is (B[1] OR B[2] OR B[3]). The former indicates whether 
the bit at position 3 of B is '1' and the latter indicates that B has 
some '1' bits after position 1 (inclusive). Note that whenever 
GB0 is inactive, i.e. ‘0’, the GB1 would also be inactive. 

To provide a regular structure and avoid long wires, at the 
output of each gated segment there is a 2-to-1 multiplexer that 
determines the input of the circuit following that segment. If 
the latch enable signal for that segment was active, the output 
of the final CSA line of the segment (gray block arrows in 
Figure 1. ) would become the input of the next segment. 
Otherwise a shifted version of the segment’s input (hatched 
block arrows in Figure 1. ) will become the output of the 
segment. 

Also each CSA row should provide one bit of the result (as 
is the case with ordinary array multipliers). When the 
containing gating segment of a CSA row is active, the data in 
that segment is valid and the required bit is the sum output of 
the least significant FA of the CSA row. But when the segment 
is inactive, the required bit should be directly computed from 
the inputs of the segment. Thus, there is an additional FA 
(Compensation FAs in Figure 1. ) in every such CSA row, 
responsible of computing the required bit in the latter case. A 
2-to-1 multiplexer chooses the sum output of the proper FA 
(Normal or Compensation FA) as the relevant bit of the final 
result. 

As can be seen from Figure 1. , the resulted structure is still 
highly regular and the length of the wires are limited to the 
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Figure 1.  Structure of a 4×4 modified unsigned multiplier 



 

         

distance of GBs, which tend to be small in real designs. In our 
experimental results it won't exceed 3 rows (See section III). 

B.  Signed Multiplier Implementation 
The previous design for the unsigned multiplier could be 

easily extended, with some modifications, for signed 
multiplication. 

First of all, the inputs to a signed multiplier are in 2’s 
complement number system. Thus when you have a negative 
number with small magnitude, e.g. -1, there are many leading 
‘1’ bits that just represent sign extension and have no 
computational value. Thus we should try to avoid any 
computation as a result of such sign bits of B. In a conventional 
signed array multiplier, like Baugh-Wooley’s [7], these leading 
‘1’ bits will take part in the actual computation of the final 
result and thus we can not just use a Baugh-Wooley (or similar) 
multiplier and apply the signal gating to it. Hence, we use the 
following formula to handle the case of negative value of B: 

(1) )( bbaba +×−=×  

According to (1), in case of a negative value for B we will 
use the complement of B, which represents a positive number, 
in the array multiplication circuit, add A to the output of array, 
and negate the final result. Another possible technique could be 
to negate B and then negate the final result but this has the 
drawback that, due to rippling nature of negation operation, it 
will introduce lots of switching activity in the negation circuit, 
which in turn will cause a great deal of switching activity 
inside the CSA rows. 

C. Selection of Gating Boundries 
To describe the gating boundary selection technique, we 

first introduce the concept of Most Significant Position (MSP). 
For an unsigned binary number, the MSP is the position of the 
highest ‘1’ bit in the binary representation of the number, 
numbering the LSB with 1. For example, in case of (12)10 = 
(00001100)2’sC MSP is 4. For a negative number, the MSP is 

equal to the MSP of its absolute value. For example, in case of 
(-12)10 = (11110100)2’sC MSP is again 4. 

The most important task in the optimization of a multiplier 
is to select the number and position of GBs. To do this, one 
should have some intuition into the MSP distribution of the 
multiplication operands. 

Figure 2.  shows the MSP distribution in each of the 
benchmark datasets. Error! Reference source not found. 
shows the MSP distribution in the whole datasets. Having such 
MSP distribution diagrams, one can decide on the number and 
position of GBs. GBs should be chosen so that they can filter 
out some unnecessary computation in nearly all the 
multiplications. In Error! Reference source not found., a GB 
at bit 13 seems to be a good choice because most of the inputs 
have less than 13 significant bits and a GB at 13 can de-activate 
3 CSA rows (13, 14, and 15). The next candidate for GB seems 
to be at 10th or 11th rows because they still de-activate enough 
CSA rows and a considerable portion of the inputs have less 
than 10 or 11 significant bits. As the results show, the choice of 
(11,13) for GB positions seems to be slightly better than 
(10,13). 

III. BENCHMARK DATA AND EXPERIMENTAL RESULTS 
To assess the efficiency of the proposed technique, we have 

extracted benchmark data from two typical DSP applications. 
We have implemented two digital filters of order 4 with the 
following specifications: 

• An elliptic low pass filter with Fs = 11025, Rp = 1.0 db, 
Rs = 20.0 db, Fc = 2000 Hz. 

• An elliptic band pass filter with Fs = 11025, Rp = 1.0 
db, Rs = 20.0 db, Fc1 = 2000 Hz, Fc2 = 2500 Hz. 

In the specifications above, Fs stands for the sampling 
frequency of the input data of the filter, Rp and Rs stand for 
attenuation in pass and stop bands respectively, and Fc, Fc1, and 
Fc2 are cutoff frequencies of the two filters. 

To generate the inputs of the filters, we have selected 
“ringin.wav” from the media files of MS Windows™ and 
applied the filters to this file and its scaled-up and scaled-down 
versions. The maximum amplitude, for the file, scaled-up, and 
scaled-down versions are 0.7, 1.0, and 0.2, respectively. 

Figure 2.  and Error! Reference source not found. show 
the multiplier MSP distribution of the benchmark data. The 
percent of switching activity reduction for different GB 
compositions is given in TABLE I. . In these tables, BP and LP 
refer to data from the band pass and low pass filters, 
respectively. Also, NS, SU and SD refer to the data derived 
from non-scaled, scaled-up and scaled-down versions of 
“ringin.wav”, respectively. As can be seen, depending on the 
selection of GBs and MSP distribution of multiplier, the 
proposed technique leads to switching activity reductions from 
14 to 42. As can be seen, second design (which in our opinion 
gives the best results) reaches an average of 26 percent of 
switching activity reduction. 

 

Figure 2.  MSP distribution in individual benchmark datasets 



 

         

The reason we have chosen the benchmark data from DSP 
applications is that in such applications the multiplication 
operands tend to have higher MSPs than common software 
applications which run on general purpose processors. Based 
on the data given in [2], the MSPs of the multiplication 
operands of typical benchmark software applications tend to be 
much less and, hence, the proposed technique should give rise 
to much higher gain in terms of power reduction. 

Designs were synthesized in a 0.25 µm standard CMOS 
technology. 0 gives the area and delay overhead of the 
proposed technique. As can be seen, delay and area overhead of 
the designs are in acceptable ranges  

IV. SUMMARY AND CONCLUSION 
In this paper, we proposed a data driven approach for 

decreasing the switching activity (and hence the power 

consumption) of combinational array multipliers. The proposed 
technique is based on the fact that all multiplication steps 
associated with the generation and the accumulation of trivial 
partial products can be eliminated at the end of the 
multiplication. The proposed method uses signal gating to de-
activate those portions of the multiplier that perform no useful 
computation. 

Also we have proposed a method to select Gating 
Boundaries based on the characteristics of the application data. 
We presented the results obtained for these modified 
multipliers on some benchmark data extracted from two typical 
DSP applications. The results show that this technique can 
achieve 14 to 42 percent switching activity reduction, 
depending on the MSP distribution of multiplication operands. 
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TABLE I.  SWITCHING ACTIVITY REDUCTION IN MODIFIED CIRCUITS (PERCENT) 

Multiplier SU-LP SU-BP NS-LP NS-BP SD-LP SD-BP Average 
1 GB at 13 14 21 17 25 28 16 25 

2 GBs at (11,13) 15 23 20 30 30 41 26 
2 GBs at (10,13) 13 21 17 27 27 42 21 

 

TABLE II.  AREA AND DELAY OVERHAD OF MODIFIED CIRCUITS (PERCENT) 

Multiplier Area Delay 
1 GB at 13 14 23 

2 GBs at (11,13) 22 27 
2 GBs at (10,13) 22 27 

 

 

Figure 3.  Total MSP distribution in benchmark datasets 


