
Programmable Routing Tables for Degradable Mesh-Based
Networks on Chips

A. Shahabi, N. Honarmand and Z. Navabi
CAD Laboratory, School of Electrical and Computer Engineering, University of Tehran, Tehran, IRAN

{shahabi, nima}@cad.ece.ut.ac.ir, navabi@ece.neu.edu

Abstract: The decreasing manufacturing yield of
integrated circuits, as a result of rising complexity and
decreased feature size, and the emergence of NoC-
based design techniques, has necessitated the search
for network reconfiguration techniques for reusing
NoCs with faulty communication hardware. In this
paper, we propose a method to cope with the problem
of faulty ports in NoCs with mesh topology. The
method is based on the use of reconfigurable routing
tables in network switches. We investigate this
technique for a conventional routing mechanism and
our optimized routing approach. The conventional
mechanism uses one entry in its routing table for every
destination address while our proposed routing
mechanism uses a fixed number of entries per table and
routes based on the address value comparison of the
current switch and the destination switch.
Experimental results show that a network reconfigured
for fault masking by programming its routing tables
has acceptable but degraded performance parameters
as compared to the original, non-faulty network.

Keywords: Degradability, Network on Chip,
Programmable Routing Table.

1. Introduction
By the end of the decade, 45-nm transistors

operating below 0.7 volt will be used which make it
possible to put 4 billion transistors running at 15 GHz
on a single chip [1]. System-on-chip (SoC) design
methodology [2] has been proposed to provide the
appropriate and integrated solutions to manage the
increased complexity inherent in these large chips. In
this technique the pre-designed and pre-verified block,
called Intellectual Property (IP) core, are achieved from
the third parties or internal source and combined on a
single chip to facilitate the design process and reduce
time to market. Communication between the IP cores is
one of the most important challenges in the SoC design
methodology. Bus-based architectures, which are
generally used in the common SoCs, cannot closely
follow the process evolution.

Network on Chips (NoCs) [3], [4] have been
proposed to solve this problem by decoupling of the
processing elements (i.e., IP cores) from the
communication fabric. A typical NoC at least consists
of four major components: Processing Elements (PEs),
Switches, Network Interface Units (NIUs), and
Physical Links. PEs do the actual processing while the

others constitute the communication fabric. NIUs are
the interfaces of PEs to the network. Wormhole routing
 [5] is commonly used in the NoC architecture as the
switching scheme. Several NoC architectures and their
implementation details are presented in [6], [7], [8], [9]
and [10].

While advances in silicon integration technology
and nano-scale feature size have made it possible to put
more and more transistors on a single die, it has also
caused the dies to be more susceptible to
manufacturing faults and decreased the process yield.
Since manufacturing faults tend to be local and affect
only a limited area of the IC, it is possible (and very
desirable) to find methods to make such faulty ICs
reusable. Such failures can occur in PEs and/or in
communication fabric. Several methods have addressed
this problem for the processing elements [11] and
communication fabric [12]. In this paper, we focus on
alternative solutions for recovering a faulty
communication fabric.

One possible method to work around the permanent
faults is to use fault tolerant architectures. Marculescu
 [13] has discussed the possibility of achieving on-chip
fault-tolerant communication based on a randomized
gossip protocol. A Node forwards the packets to a
randomly chosen subset of the neighboring nodes until
the packets reach the destination. Detection and
handling of the duplicate packets in each node increase
the complexity and overhead of routing.

Yang et al. [12] have proposed a new torus [7]-like
network and a fault-tolerant routing algorithm to
compensate the effect of link failure(s). In that work,
the basic torus is called rank-0 torus. Each next rank is
formed by adding four links (at an angle of 45 degrees)
to the previous one. Obviously, the added links impose
a considerable area overhead on the design and
increase its wiring complexity.

Reconfiguring the faulty IC to avoid using the
faulty modules (PEs, switches or links) and get the
work done using the remaining non-faulty ones is
another approach, that is usually referred to as
Degradability [11]. Traditionally, reconfiguration based
techniques have been used for highly regular circuits
(e.g. memory chips), but in the realm of NoC design
methodology, effective methods should still be sought
for.

Generally, degradability-based methods imply a
design and manufacturing flow including the following
steps: First, at the design stage, special algorithms

should be used which result in reconfigurable data
paths and control units. Then, after the IC has been
built, diagnosis techniques [14] should be used to
detect the faulty components of the circuit. Then, based
on the obtained fault pattern, a proper configuration,
which bypasses the faulty modules, should be chosen
and programmed into the circuit. This implies that the
circuit should inevitably have some programmable
elements in it and post-manufacturing reconfiguration
should be possible. But, this is by no means a great
overhead because widely-used built-in provisions such
as JTAG or scan chains can be used for this purpose.

In this paper, the problem of faulty ports in the
switches is considered for a network with mesh
topology. In Section 2 we propose a new routing
mechanism for mesh-based networks instead of the
conventional routing mechanism which has serious
drawbacks. Then, in Section 3.1 and 3.2, we provide
algorithms to reconfigure a network with faulty ports
that use the conventional and proposed routing
mechanism respectively. Finally, in Section 4, we
compare the performance parameters of the
reconfigured networks with faulty links against those
of original non-faulty network.

2. Switches and Routing Mechanisms
Kumar et al. [6] have proposed a simple mesh-

based interconnection architecture, called CLICHÉ
(Chip Level Integration of Communication
Heterogeneous Element), as an NoC architecture
(Figure 1). In this topology, every switch, except those
placed on edges, is connected to four adjacent switches
and to the related PE. The switches at the edge are
connected to two or three neighboring switches. The
mesh-structure is commonly used in the NoC
architectures because of its simple layout structure and
independency of local interconnections from the size of
the network.

In an NoC, switches are responsible for routing the
packets between nodes. Each switch has a set of
bidirectional ports through which it is connected to
neighboring switches or PEs. It also contains a router
to define a path between input and output ports, buffers
to store intermediate data and an arbiter to grant access
to a given port when multiple input requests arrive in

parallel. Simple switch architecture for the mesh
topology is shown in Figure 2. A mesh switch, in
general, has five bidirectional ports: one attached to the
local PE (local port) and the other four to the
neighboring switches (system ports). Each port consists
of a FIFO and a multiplexer. The FIFO Buffers the
incoming packets and the output selection is done
through the multiplexer. If the received packet destined
for that node, it should be delivered to the attached PE,
through the local port. Otherwise, one of the output
system ports (Left, Right, Up and Down) should be
selected according to the destination address.

Implementation of the routing algorithm is one
important aspect of the switch design process. It can be
implemented as a hardwired module or as a
Programmable Routing Table (PRT). In the hardwired
style, no programming is required but the switch
cannot be altered to bypass the faulty port(s). Thus, the
chip will become unusable whenever some ports
become faulty unless fault-tolerance provisions have
been made into the circuit. But, in the case of PRTs, the
switch can be programmed to bypass the invalid ports
and get the job done using the remaining non-faulty
ports. As said before, this approach, inevitably, adds an
additional step of programming the PRTs to the
manufacturing process.

The paths taken by packets between source and
destination switches, hence the contents of the PRTs,
are defined by the routing algorithm in use. A routing
algorithm should be able to prevent live-lock situations
 [5]. Live-lock refers to the situation in which some
packets will not reach their destination, even if they
never get blocked permanently.

The simplest way to implement an PRT is to use a
lookup table with as many entries as the number of
nodes in the network. The index of the table will be the
destination address of a packet and each entry will
contain the identifier of the proper output port for the
given destination address. We call this method Per-
Address Routing (PAR) because the PRT has one entry
for each possible address in the network.

The PAR-based PRT, in spite of its simplicity,
suffers from two major drawbacks: (1) The size of the
lookup table will grow linearly with the number of
NoC nodes. In addition to the area overhead, the switch

: Switch

: Processing
 Element

Left System
 Port

R
ight System

 Port

Down System Port

Up System Port

Local Port

Router
Controller

>=<
In 1

In 2

>
=
<

>=<
In 1

In 2

>
=
<

X - Destination

X - Current Node

Y - Destination

Y - Current Node

Encoder
G X

E x

L X

G Y

E y

L Y

Port ID

/
4 bits

GX Gy
GX EY
GX LY
EX GY
EX EY
EX LY
LX Gy
LX EY
LX LY

Figure 1: Mesh Topology Figure 2: Simple switch
architecture for the mesh topology

Figure 3: Mesh-based routing
mechanism

throughput will decrease due to the large size of the
table and the resulting delay of lookup operation (table
lookup should take place at least once for every
received packet). (2) The PAR method is not amenable
to network scaling because the switch cannot be used
in networks with more nodes than the number of
lookup table entries.

Based on the particular topology and routing
algorithm in use, there may be some methods to work
around the above problems. We demonstrate such a
technique for mesh topology and its widely used XY
 [5] routing algorithm.

In mesh-based networks, the address of a node is a
pair (x,y) which is the coordinates of the node in the
mesh. A simple live-lock free routing algorithm, called
XY, has been proposed for the mesh topology. In this
algorithm, a packet is first routed in X direction: if the
x-coordinate of the destination is less than that of the
current node it will be routed to the left and if it is more
than that of the current node it will be routed to right.
Afterwards, the packet will be routed in the Y
direction, i.e., up or down, based on the y-coordinate of
the destination address.

Based on this algorithm, Figure 3 shows the
proposed routing mechanism. Two small comparators
compare the x- and y-coordinates of the current node
with those of the destination. The outputs of each
comparator can assume three different one-hot coded
states (G for greater, E for equal and L for less). Thus,
we can have 9 different situations for the combination
of two comparator outputs. An encoder will generate a
4-bit signal to indicate the occurrence of one of these 9
situations. The output of the encoder is used to index a
9-entry, programmable lookup table. Each entry of the
lookup table contains a port identifier to indicate one of
the five ports that should be used. Obviously, the
routing hardware has a fixed structure and does not
depend on the number of nodes in the network.
Throughout this paper, we refer to this method as
Mesh-Based Routing (MBR) because it is tailored to
the mesh topologies.

3. Programming PRTs Under Port Failures
When an output (input) port becomes faulty, the

related switch cannot send (receive) any packet to
(from) that port. Thus another non-faulty port in the
switch should perform the task of the faulty switch.
Each faulty port in a switch will make a non-faulty port

in the adjacent switch unusable. For example when the
left input port of switch B (Figure 4(a)) goes faulty, the
right output port of the adjacent switch (A in Figure
4(a)) will become unusable.

The network topology can be considered as a
directed graph with switches being its vertices and
links being its edges. If this graph is strongly
connected, then the network will be structurally
connected. We say that the network is routing-
connected if for every source and destination (SRC,
DST) pair of nodes, a packet produced in SRC can be
routed to reach DST. Whether this is possible or not
depends on the routing table configuration of the nodes
that the packet visits. Improper configurations might
cause a live-lock and prevent the packet from reaching
its destination.

It is possible for a network to be structurally
connected and yet no set of PRT configurations can be
found to make the network routing-connected. We call
a network routing-connectable if there is a set of PRT
configurations to make the network routing-connected.

In Section 3.1, we show that every structurally-
connected network with PAR-based PRTs is routing-
connectable. In Section 3.2 we show that a structurally-
connected network with MBR-based PRTs might not
be routing-connectable, and we provide an algorithm
that tries to find a proper set of PRT configurations if
the network is routing-connectable.

3.1 Programming PAR-based PRTs
It can be shown that if a network is structurally

connected, then there is a set of PAR-based PRTs for
the network to become routing-connected. Such PRT
configurations can be found using any live-lock free
routing algorithm such as the shortest path. To do this,
we first find the shortest path between all nodes. Then,
Consider a particular (SRC, DST) pair of nodes.
Suppose that, in the shortest path between SRC and
DST, NSRC is the node appearing after SRC and SRC is
connected to NSRC through port PN. Then, in the PRT of
SRC, set the entry for DST to PN. If we repeat this for
all possible node pairs, the resulting PRT
configurations will shape a routing-connected network.

This algorithm proves that every structurally
connected network with PAR-based routing tables is
routing-connectable. However, the obtained network
might not have good performance parameters, e.g.,
path length and network congestion.

A B C

D E F

G H I

X
X

XX

X
X

a

A B C

D E F

G H I

X

A B C

D E F

G H I

X
X

XX

Switch Hard Constraints Soft Constraints
B D < R D < L
C D < L -
D R < D R < U
E - R < U, D < L
F - L < U, L < D
G R < U -
H - U < L, U < R

(a) (b) (c) (d)
Figure 4: (a) a network which is not routing connectable using MBR-based routing tables (b) a network with one

faulty port (c) a network with four faulty ports (d) routing constraints in network of (c)

3.2 Programming MBR-based PRTs
It is possible for a MBR-based network to be

structurally connected but not routing-connectable.
Figure 4(a) shows an example of such a network. In
this figure, the crosses indicate the faulty ports. For
example cross between node D and node E indicates
the right output port of node D or left input port of
node E or both of them is faulty. No configuration can
be found for the MBR-based PRTs to create a routing-
connected network. Because when B has a packet
destined for E, it should send it using BE link and
when it has a packet destined for H it should not use
BE link. Thus, there is no feasible port identifier for
(Ex Gy) entry of B's routing table.

When a packet arrives at a switch, either it is
destined for the attached PE or it must be routed using
one of the four system ports. In what follows, we use
L, R, D and U to indicate moving in left, right, down or
up directions respectively. The decision on where to
route the packet is based on the result of address
comparison between current switch and the destination
switch.

Consider a packet which is currently at a switch
addressed (xcur, ycur) and is destined for switch (xdst,
ydst). We define the distance of the switches as

dist(cur, dst) = (| xdst - xcur | + | ydst - ycur |)
This distance is the minimum number of hops that

the packet should traverse until it reaches its
destination. If a routing algorithm routes a packet in
such a way that its distance from the destination switch
decreases with each move, the algorithm will be live-
lock free. This is because a live-locked packet will visit
a switch twice and this cannot happen with a
decreasing sequence of distances. The conventional

XY routing algorithm has this property and thus is live-
lock free. We call every move that decreases the
distance of packet from its destination a positive move.
Otherwise, we call it a negative move. In mesh-based
networks, such moves will inevitably increase the
distance.

Sometimes there are multiple positive moves for a
packet. For example, if the destination is both to left
and above the current switch, taking either direction
will be a positive move. In this case, direction to
choose depends on the routing table of the current
switch. An MBR-based routing table has one entry for
every possible combination of positive moves, as
shown in Figure 3. The contents of this table indicate
the relative priority of moving in different directions.
For example, if in the entry corresponding to positive
moves in up and left directions, (Lx Ly) in Figure 3, the
port identifier of the left port is given, then the priority
of moving in the left direction is more than moving up.
We use the "<" operator to show the priority of
movements. In this case, we write U<L.

Reconfiguration Procedure. When a port in a
switch becomes faulty, the switch will need some help
from one of the neighboring switches (helping switch)
to route the packet. Since the switch with a faulty port
might be forced to perform a negative move, the
distance may increase and if the priorities in the
helping switch are not set properly, it might return the
packet to the original switch and cause live-lock.
Hence, it will be necessary to put some constraints on
the possible priority combinations that the helping
switch can use. For each switch, we can show the
relative priorities of different directions with a
permutation of L, R, D and U. For example, with
LUDR pattern (the leftmost letter has the lowest
priority), the switch first routes the packets to right if it
is a positive move. Otherwise, the switch considers the
down direction. Finally, the left port is selected when
no movement is available for the right, down and up
port. The permutation of 4 elements can assume 24
different patterns. However, since the switch cannot
use its Left (Up) and Right (Down) ports
simultaneously, some of the patterns can be combined.
The UDLR, UDRL, DULR and DURL (LRUD,
LRDU, RLUD and RLDU) can be merged because
they behave like familiar XY (YX) routing algorithm.
Thus, only 18 different patterns can occur and should
be considered in the algorithm.

An example with one faulty port. To demonstrate
our technique, Figure 4(b) shows a mesh structure with
one faulty port. Since the right output port in node E is
faulty, switch E can select one of its three adjacent
switches (B, D, and H) as the helping switch. Suppose
that we choose switch B. This will impose some
restrictions on the routing table of B to prevent live-
lock situations. Suppose node E has a packet destined
for node F. Since the right output port of E is faulty,
node E will send the packet to B, instead. Now, node B
has a packet that should move both right and down. If,

CONFIGURENETWORK(failure_set, current_constraints)
begin
 if ISEMPTY(failure_set) then
 for each configuration conf which satisfies all the constraints
 test all possible (src, dst) node pairs for a live-lock free path
 if the test succeeds then
 return conf;
 end if;
 end for;
 return NULL;
 else
 f = FIRST(failuer_set);
 n = node affected by f;
 for each possible helping node h for n
 new_constraints =
 current_constraints +
 {constraints from using h as the helper};
 if COULDBESATISFIED(new_constraints) then
 return
 CONFIGURENETWORK(failure_set - f, new_constraints);
 else
 return NULL;
 end if;
 end for;
 end if;
end

Figure 5: Reconfiguration algorithm for MBR-based
routing tables

in routing table of B, down moves have a higher
priority than right moves, B will send the packet back
to E and will cause a live-lock. Thus, for B, the priority
of down move should be less than right move, or D<R.
This is a Hard Constraint (HC) for B, i.e., it must be
met to have a live-lock free routing.

When we consider all the possible faulty ports and
extract all the required constraints, it might be the case
that for a switch, the constraints are conflicting. For
example, a switch might have both L<R and R<L
constraints. Obviously, these are conflicting constraints
and cannot be satisfied simultaneously. Suppose that in
our example, we first choose B as the helping switch of
E and after considering other switches, we get trapped
in a conflicting situation. It might be the case that this
conflict has happened because of choosing B as the
helping node. Hence, we should now check the
alternative choice and test the selection of H or D
instead of B as the helping node. This means that our
algorithm should have a backtracking nature and
whenever it encounters some conflict, it should
backtrack to the last point that it had an alternative
choice and test that one.

Moreover, we can use another constraint type,
called Soft Constraint (SC) to reduce the average
length of paths in the mesh structure under faulty
conditions. Suppose that in Figure 4(b), E is helped by
switch B to route in the right direction. It is better to
force switch E to first route the packets using its non-
faulty links (up, left and down) if it is a positive move.
This means that switch E will use the helping switch B
to route when no other choice exists. Thus we consider
the following SCs for switch E: {R<U, R<D, R<L}.
Since, moving to right and left are exclusive and
cannot happen at the same time, the (R<L) constraint is
useless. Thus, we can add (R<U) and (R<D) to the soft
constraint list of node E.

As another example, Figure 4(c) shows a network
with four faulty ports (right and down output port of E,
left output port of F and up output port of H) and
Figure 4(d) shows the assigned hard and soft
constraints for each switch. The switches missing in the
table have no constraints.

Reconfiguration Algorithm. Figure 5 shows the

reconfiguration algorithm. The CONFIGURENETWORK
routine has two inputs: set of faulty ports that have not
been handled yet, and the constraints resulting from
handling previous faults. It selects one faulty port from
the list and, one by one, examines all possible helping
nodes for the node affected by the faulty port. It repeats
this process until there remains no faulty port in the
list, i.e., all the faults get handled, or at some point, the
set of constraints could not be satisfied. In the former
case, it checks all the routing table configurations that
satisfy the constraints. If a configuration results in a
live-lock free network, it will be returned as the result.
Otherwise, the algorithm will backtrack to the point of
the last choice. In the latter case, the algorithm will
consider alternative helping nodes for the node affected
by current faulty port. If there is no unchecked
alternative, the search fails and the algorithm will
return NULL to indicate failure.

4. Experimental Results
To assess the proposed technique, we have

considered 10 examples 4 by 4 networks, Figure 6,
with 1 to 36 faulty ports. For example EX1 in this
figure shows that the down output port of node (2,2) or
the up input port of node (2,3) or both of them can be
faulty. To measure the quality of obtained network
configurations, we have extracted the following
parameters for each network: the average and
maximum path length in the network and the average
and maximum link load. Load of a particular link
indicates the number of different (SRC, DST) pair of
nodes whose packets should use that link. Table 1
presents the results obtained for MBR-based
techniques. The row indicated with XY in the table
gives the performance parameters for a network with
no faulty ports in which all the routing tables are
configured according to XY routing mechanism. The
values in parenthesis are normalized with respect to the
corresponding values of non-faulty XY network.

As Table 1 shows, the general trend of performance
parameters is to get worse when the number of faulty
ports increases. However, there are some deviations.
These deviations can be attributed to the sensitivity of
the results to both the number and the pattern of faulty

(0,0)

(0,1)

(0,2)

(0,3) (1,3) (2,3) (3,3)

(1,2) (2,2) (3,2)

(1,1) (2,1) (3,1)

(1,0) (2,0) (3,0)

X

(0,0)

(0,1)

(0,2)

(0,3) (1,3) (2,3) (3,3)

(1,2) (2,2) (3,2)

(1,1) (2,1) (3,1)

(1,0) (2,0) (3,0)

X

X X

(0,0)

(0,1)

(0,2)

(0,3) (1,3) (2,3) (3,3)

(1,2) (2,2) (3,2)

(1,1) (2,1) (3,1)

(1,0) (2,0) (3,0)

X X

X

(0,0)

(0,1)

(0,2)

(0,3) (1,3) (2,3) (3,3)

(1,2) (2,2) (3,2)

(1,1) (2,1) (3,1)

(1,0) (2,0) (3,0)

X
X

X

X

X

(0,0)

(0,1)

(0,2)

(0,3) (1,3) (2,3) (3,3)

(1,2) (2,2) (3,2)

(1,1) (2,1) (3,1)

(1,0) (2,0) (3,0)

X

X
X

X

X X X X

EX1 EX2 EX3 EX4 EX5

(0,0)

(0,1)

(0,2)

(0,3) (1,3) (2,3) (3,3)

(1,2) (2,2) (3,2)

(1,1) (2,1) (3,1)

(1,0) (2,0) (3,0)

X
X

X

X

X
X
X

X

X

(0,0)

(0,1)

(0,2)

(0,3) (1,3) (2,3) (3,3)

(1,2) (2,2) (3,2)

(1,1) (2,1) (3,1)

(1,0) (2,0) (3,0)X X

X X

X
X

X

X

X
X X

(0,0)

(0,1)

(0,2)

(0,3) (1,3) (2,3) (3,3)

(1,2) (2,2) (3,2)

(1,1) (2,1) (3,1)

(1,0) (2,0) (3,0)

X X
X X

X X

X X X X

X
X X

X

(0,0)

(0,1)

(0,2)

(0,3) (1,3) (2,3) (3,3)

(1,2) (2,2) (3,2)

(1,1) (2,1) (3,1)

(1,0) (2,0) (3,0)

X
X

X

X
X

X

X

X

X

X

X
X

X

X
X

(0,0)

(0,1)

(0,2)

(0,3) (1,3) (2,3) (3,3)

(1,2) (2,2) (3,2)

(1,1) (2,1) (3,1)

(1,0) (2,0) (3,0)

X

X

X
X X

X X

X

X
X

X
X

X X
X X

X X

EX6 EX7 EX8 EX9 EX10

Figure 6: Example networks with 1 to 36 faulty ports used in experiments

ports in the network. EX2 and EX3 in Figure 6
demonstrate the sensitivity to pattern of faulty ports. In
both cases there are 3 faulty ports and only the
positions of the ports differ in two cases. As expected,
when the algorithm is able to incorporate soft
constraints, the results will be better than when only
hard constraints are considered.

Also it can be seen that, although the maximum link
load increases drastically as compared to non-faulty
network, but other performance parameters, especially
average values, increase smoothly with the number of
faulty ports. It is interesting that the maximum and
average path length increase by 50% and 42%
respectively in the case of 36 faulty ports.

5. Conclusions
In this paper, we have considered the problem of

faulty ports in NoCs and have proposed a method for
reconfiguring the switch of a network to bypass the
faulty ports. This method is based on using network
switches with programmable routing tables. The
reconfigured network may have a lower performance
due to decreased number of available ports.

We have considered two different routing
mechanisms to which we have applied the proposed
technique. First, we showed that for every structurally
connected network with PAR-based routing tables, a
set of routing table configurations could be found to
make the network routing connected. Also, we
considered a new optimized routing mechanism and
proposed an algorithm to reconfigure the networks
using that routing mechanism. The experimental results
show that the algorithm could reconfigure the faulty
networks to achieve acceptable performance
parameters with regard to non-faulty networks using
XY routing mechanism.

Acknowledgment
The authors would like to thank the Iran

 Telecommunication Research center (ITRC) for
supporting this work.

References
[1] Semiconductor Industry Association, International

Technology Roadmap for Semiconductors, World
Semiconductor Council, Edition 2005, 2005.

[2] R. Saleh et al., "System-on-Chip: Reuse and
Integration," Proc. IEEE, vol. 94, no. 6, pp 1050-1069,
Jun 2006.

[3] L. Benini and G. De Micheli, "Networks on chips: a new
SoC paradigm," IEEE Computer, vol. 35, no. 1, pp. 70-
78, Jan. 2002.

[4] P.P. Pande et al., "Design, Synthesis, and Test of
Network On Chips," IEEE Des. Test. Comput., vol 22.
no. 5, pp. 404-413, Sept./Oct. 2005.

[5] J. Duato, S. Yalamanchili, and L. Ni, Interconnection
Networks—An Engineering Approach, Morgan
Kaufmann, 2002.

[6] S. Kumar et al., "A Network on Chip Architecture and
Design Methodology," in Proc. ISVLSI'02, pp. 117-124,
2002.

[7] W.J. Dally and B. Towles, "Route Packets, Not Wires:
On-Chip Packet-Switched Interconnections," in proc.
DAC'01, 2001, pp. 683-689, 2001.

[8] F. Karim, A. Nguyen, and S. Dey, "An Interconnect
Architecture for Networking Systems on Chips," IEEE
Micro, Vol. 22, No. 5, pp. 36-45, Sept./Oct. 2002.

[9] P. Guerrier and A. Greiner, "A generic architecture for
on-chip packet-switched interconnections," in Proc.
DATE'00, pp. 250-256, Mar. 2000.

[10] P.P. Pande, C. Grecu, A. Ivanov, and R. Saleh, "Design
of a Switch for Network on Chip Applications," in Proc.
ISCAS'03, vol 5. pp. 217-220, May. 2003

[11] N. Honarmand, A.Shahabi, H. Sohofi, M. Abbaspour,
and Z. Navabi, "High Level Synthesis of Degradable
ASICs Using Virtual Binding," VLSI Test Symposium,
2007, in press.

[12] M. Yang, T. Li, Y. Jiang, and Y. Yang, "Fault-Tolerant
Routing Schemes in RDT(2,2,1)," in Proc. ISPAN'05,
pp. 1-6, Dec. 2005.

[13] R. Marculescu, "Networks-on-Chip: The Quest for On-
Chip Fault-Tolerant Communication," in Proc.
ISVLSI'03, pp. 8-12, Feb. 2003.

[14] C. Grecu et al., "On-line Fault Detection and Location
for NoC interconnects," in Proc. IOLTS'06, pp. 145-150,
July 2006.

Table1: Experimental Results
Hard + Conceivable Soft Constraints Hard Constraints

of

Faulty
Ports

Longest Path
Length

Average Path
Length

Maximum
Load

Average
Load

Longest Path
Length

Average Path
Length

Maximum
Load

Average
Load

XY 0 6(1.00) 2.67(1.00) 16(1.00) 13.3(1.00) 6(1.00) 2.67(1.00) 16(1.00) 13.3(1.00)
EX1 1 ~ 2 6(1.00) 2.69(1.01) 25(1.56) 13.7(1.03) 6(1.00) 2.71(1.01) 28(1.75) 13.9(1.04)
EX2 3 ~ 6 7(1.17) 2.81(1.05) 34(2.13) 15.0(1.13) 7(1.17) 2.88(1.08) 36(2.25) 15.4(1.15)
EX3 3 ~ 6 6(1.00) 2.76(1.03) 32(2.00) 14.8(1.11) 6(1.00) 2.78(1.04) 32(2.00) 14.9(1.11)
EX4 5 ~ 10 7(1.17) 2.91(1.09) 46(2.88) 16.2(1.22) 8(1.33) 3.01(1.13) 50(2.13) 16.8(1.26)
EX5 8 ~ 16 9(1.50) 3.52(1.32) 40(2.50) 21.1(1.58) 9(1.50) 3.52(1.32) 40(2.50) 21.1(1.58)
EX6 9 ~ 18 7(1.17) 3.18(1.19) 46(2.88) 19.5(1.47) 8(1.33) 3.25(1.22) 50(3.13) 20.0(1.50)
EX7 11 ~ 22 8(1.33) 3.12(1.17) 41(2.56) 20.2(1.52) 8(1.33) 3.15(1.18) 44(2.75) 20.4(1.53)
EX8 14 ~ 28 9(1.50) 3.93(1.47) 64(4.00) 27.8(2.08) 9(1.50) 3.93(1.47) 64(4.00) 27.8(2.08)
EX9 15 ~ 30 9(1.50) 3.35(1.25) 70(4.38) 24.4(1.83) 9(1.50) 3.35(1.25) 70(4.38) 24.4(1.83)

EX10 18 ~ 36 9(1.50) 3.80(1.42) 64(4.00) 30.4(2.28) 9(1.50) 3.80(1.42) 64(4.00) 30.4(2.28)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

