
Replay Debugging: Leveraging Record and Replay for Program Debugging ∗

Nima Honarmand and Josep Torrellas
University of Illinois at Urbana-Champaign

{honarma1,torrella}@illinois.edu
http://iacoma.cs.uiuc.edu

Abstract

Hardware-assisted Record and Deterministic Replay (RnR)

of programs has been proposed as a primitive for debugging

hard-to-repeat software bugs. However, simply providing sup-

port for repeatedly stumbling on the same bug does not help

diagnose it. For bug diagnosis, developers typically want to

modify the code, e.g., by creating and operating on new vari-

ables, or printing state. Unfortunately, this renders the RnR

log inconsistent and makes Replay Debugging (i.e., debugging

while using an RnR log for replay) dicey at best.

This paper presents rdb, the first scheme for replay debug-

ging that guarantees exact replay. rdb relies on two mech-

anisms. The first one is compiler support to split the instru-

mented application into two executables: one that is identical

to the original program binary, and another that encapsulates

all the added debug code. The second mechanism is a runtime

infrastructure that replays the application and, without affect-

ing it in any way, invokes the appropriate debug code at the

appropriate locations. We describe an implementation of rdb

based on LLVM and Pin, and show an example of how rdb’s

replay debugging helps diagnose a real bug.

1. Introduction

There has been substantial recent interest in the computer ar-

chitecture community on hardware-assisted Record and Deter-

ministic Replay (RnR) of programs (e.g., [5, 7, 17, 18, 19, 30,

31, 32, 33, 36, 37, 38, 39, 45, 46, 47]). This primitive consists

of automatically recording the non-deterministic events of a

program’s execution in a log, and later using the log to replay

the program deterministically. The typical non-deterministic

events that are logged are the inputs to the program (such as

system call return values and side effects, and signals) and the

memory access interleavings of the threads.

One of the main usage models proposed for RnR is program

debugging. The motivation is that some software bugs such as

data races are often hard to repeat across executions with the

same inputs, which makes them hard to debug. Hence, having

the ability to deterministically reproduce an execution should

help debug them.

However, simply providing support for repeatedly finding

the same bug will not help remove it. The process of debugging

involves modifying the program, for example by adding code

to read program variables, create and operate on new variables,

and print state out. We call the process of performing all

∗This work was supported by NSF under grants CCF-1012759 and CNS-

1116237, and by Intel under the Illinois-Intel Parallelism Center (I2PC).

of these operations while using a log to replay an execution

Replay Debugging.

Unfortunately, any of these changes is very likely to distort

the program’s code and/or data, forcing the replayed execution

to follow different paths than in the original execution encoded

in the log. As a result, the log becomes inconsistent and cannot

guide the new execution.

In practice, prior work has shown that this scenario still

has some value. The relevant system, called DORA [43], can

help diagnose bugs or test software patches. However, DORA

often faces substantial divergence between the replayed exe-

cution and the original one. Importantly, it cannot guarantee

deterministic replay. As a result, it is unable to ensure the

exact reproduction of non-deterministic events that resulted

in a bug. This is especially problematic when dealing with

timing-dependent events like data races or atomicity violations.

Our goal, instead, is to be able to always guarantee ex-

act replay during debugging, to quickly diagnose even highly

non-deterministic bugs. We argue that, to guarantee replay

debugging with exact replay, we need two capabilities. One

is the ability to generate, out of the instrumented code, an

executable that is identical to that of the original application.

The second is the ability to replay the execution encoded in the

log while invoking the debug code at the appropriate locations

in the code.

To attain this goal, this paper presents rdb, the first scheme

for replay debugging that guarantees exact replay. With rdb,

the user interface is like in an ordinary bug diagnosis process.

The user can read program variables, invoke program functions,

create and use new debug variables and debug functions, set

watchpoints, and print state. However, he cannot modify the

state or instructions used by the program itself. Under these

conditions, rdb uses the log generated by hardware-assisted

RnR to guarantee deterministic re-execution.

rdb’s capability is possible thanks to two mechanisms. The

first one is a compiler pass that splits the instrumented appli-

cation into two binaries: one that is identical to the original

program binary, and another that encapsulates all the added

debug code. The second mechanism is a runtime infrastructure

that replays the application and, without affecting it in any

way, invokes the appropriate debug code at the appropriate

locations. No special hardware is needed beyond the original

RnR system.

Overall, the contributions of this paper are:

• It presents rdb, the first scheme for replay debugging that

guarantees exact replay.

• It describes an open-source implementation of rdb using

978-1-4799-4394-4/14/$31.00 c© 2014 IEEE

LLVM [2] for the compiler mechanism and Pin [29] for the

runtime mechanism.

• It discusses an example of how rdb’s replay debugging is

used to diagnose a real bug.

This paper is organized as follows: Section 2 gives a back-

ground; Section 3 discusses how to use RnR for replay de-

bugging; Sections 4–5 describe rdb; Section 6 presents an

example of replay debugging; Section 7 outlines limitations;

and Section 8 covers related work.

2. Background and Motivation

2.1. Hardware-Assisted Record and Deterministic Replay

To support RnR of a program’s execution, all sources of non-

determinism that can affect the execution need to be captured.

Recent proposals for hardware-assisted application-level RnR

consider two classes of non-deterministic events: program in-

puts (such as the results of system calls the program makes to

the operating system (OS) or signals the program receives) and

the memory-access interleaving of concurrent threads that re-

sult in inter-thread data dependences (in case of multithreaded

programs). The process of recording the latter is sometimes

called Memory Race Recording (MRR). Hardware-assisted

RnR systems usually use OS support for input recording and

special hardware for MRR. This is in contrast to software-only

RnR solutions, which either do not support multithreaded pro-

grams or use the OS to record both inputs and memory races.

In either case, the non-deterministic events are recorded in a

log. Then, as we replay the execution, the system injects the

recorded program inputs at the correct times and enforces the

recorded interleavings to attain deterministic re-execution.

Almost all of the recent MRR techniques are based on

the concept of Chunks of instructions (also called Blocks or

Episodes). The idea is to divide each thread’s execution into

a sequence of dynamic groups of instructions or chunks. The

execution of each chunk is logged as the number of instructions

the chunk contained. The MRR hardware also records a partial

or total order of all of the application’s chunks. For each inter-

thread data dependence, the chunk that contains the source of

the dependence is ordered before the chunk that contains the

destination. During replay, each chunk is executed after all

of its predecessors (in the recorded order) and before any of

its successors. In this manner, all inter-thread dependences

are enforced. The replayer counts the number of instructions

executed in a chunk to know when its execution is complete.

With no loss of generality, this paper assumes a hardware-

assisted RnR environment like QuickRec [36]. QuickRec is an

existing RnR prototype that uses OS support to record program

inputs, and special hardware implemented with FPGAs for

MRR. Recorded program inputs include system calls, data

copied to application buffers by the OS as a result of system

calls, signals, and results of some non-deterministic processor

instructions. Memory interleaving is captured as a log of

totally-ordered chunks.

QuickRec’s replay tool is based on Intel’s Pin [29] binary

instrumentation infrastructure. It takes the application binary

together with the recorded input and memory logs. As the

program replays, it is able to inject the recorded inputs at

appropriate points. In addition, it counts the instructions of

each chunk as it executes, and enforces the recorded size and

ordering of each chunk. Figure 1 illustrates the high-level

structure of the system.

Record

input

log

chunk

log

Chunk Size

and Order

Replay

Application

Inputs

Pin

System

&DOOV��«

Memory Accesses

OS Kernel

Application

CPU + MRR

Hardware

Figure 1: High-level organization of an RnR system.

2.2. Debugging Can Break Replay

To diagnose the root cause of a bug, programmers typically

employ a process that involves the use of a debugger (e.g.,

gdb [1]), as well as writing some debug code. To do an effective

job, programmers should be able to write code to perform at

least the following tasks:

• Inspect program state, including registers, variables, and

memory content of the program.

• Calculate expressions based on such state. This can involve

calling subroutines from the program being debugged.

• Present the inspection results, e.g., using print statements.

• Create and keep debug state in the form of local, global or

heap-allocated data structures used only for debugging.

• Set breakpoints and watchpoints to trigger some debugging

activity when certain conditions become true.

Such a debugging process almost always involves distorting

the code and/or data state of the program. Unfortunately, RnR

mechanisms are very sensitive to such distortion. As a result, if

we try to use the RnR log created by the original execution to

replay the distorted program, we will observe replay divergence

from the log.

Specifically, any changes in the code or data layout can

potentially affect the control flow of a thread, changing the

number and type of instructions executed. In hardware-assisted

RnR, it causes the chunk boundaries to be placed at wrong

instructions during replay, causing potentially-incorrect chunk

orderings. This, in turn, can violate the recorded inter-thread

data dependences.

In addition, code or data changes can cause replay diver-

gence even in single-threaded programs, where memory access

interleaving is not a concern. For example, code changes may

result in a different set of system calls than was recorded, or

system calls that are invoked with different operands. As an-

other example, programs often use the value of pointers (i.e.,

addresses of variables) to construct data structures such as sets

or maps of objects. If the pointer values change, the internal

layout in such data structures will change. When the program

traverses these data structures, changes in pointer values can

result in different traversal orders and executions.

Viennot et al. [43] consider the problem of replaying mod-

ified programs in the context of a software-only RnR engine

called SCRIBE [22] (as opposed to our focus on hardware-

assisted RnR). SCRIBE uses OS support to record the non-

deterministic events of an execution. Their proposed “mutable

replay” system, called DORA, then uses a search-based tech-

nique to find and compare different ways of augmenting (or

modifying) the recorded log in order to have it guide the ex-

ecution of the modified code. When the search fails, DORA

switches from replaying to recording in order to continue the

execution. The trade-off made in such a system, thus, is that it

gives up on the guarantee of exact replay, in order to gain more

flexibility by supporting a range of program modifications.

In this paper, we take a different approach. We aim to

provide guaranteed deterministic replay using an RnR log,

while allowing programmers to perform the debugging tasks

mentioned earlier.

3. Using RnR Support for Debugging

We call Replay Debugging the process of debugging a program

while replaying its execution using a previously-generated RnR

log. In this paper, to quickly diagnose non-deterministic bugs,

we are interested in the ability to always guarantee exact replay

during replay debugging. A requirement for this capability is

that the debugging process should not distort the program’s

code or data in any way. If this requirement is not satisfied, the

RnR log becomes obsolete and cannot be used. Unfortunately,

many of the features needed in an effective debugging process

are at odds with such a requirement. In this section, we discuss

four usability features that we believe are needed for effective

debugging. For each, we outline the challenge it presents to

our target environment, and how a system that we propose,

called rdb, addresses the challenge.

3.1. Inline Debug Code in the Program Code

Programmers typically inline debug code in the program code,

as if it were part of the main program. For example, in C/C++

programs, debug code is often enclosed between #ifdef and

#endif pre-processor macros, so that it is included in the

compilation of a debug version of the program and is excluded

otherwise (Figure 2(a)). This approach enables writing com-

plex debug logic while allowing easy access to the program’s

state and code.

Challenge. Since the inlined debug code is compiled to-

gether with the main program’s code, it changes the program’s

code and data structures, and renders the RnR log obsolete.

Solution. To address this challenge, rdb uses a compiler

pass to extract the debug code from the program code. Pro-

grammers can write inlined debug code, but they need to en-

close it within special rdb markers so that the compiler can

identify the enclosed code as debug code. Figure 2(b) shows

int a = 1;

#ifdef DEBUG

printf�³D�LV��G´��D��

#endif

(a)

int J���^�«�`

void main() {

#ifdef DEBUG

rdb_begin

printf�³J���LV��G´��J����

rdb_end

#endif

}

(d)

Final main program code:

int J���^�«�`

YRLG�PDLQ���^�«�`

Extracted debug function:

void _rdb_func(int (*arg0)()) {

printf�³J���LV��G´��DUJ�());

}

(e)

int a = 1;

#ifdef DEBUG

rdb_begin

printf�³D�LV��G´��D��

rdb_end

#endif

(b)

Extracted debug function:

void _rdb_func(int arg0) {

printf�³D�LV��G´��DUJ���

}

(c)

Figure 2: Making debug code work for rdb.

the code surrounded by the rdb_begin and rdb_end

macros understood by the compiler.

The step of extracting the debug code should take place in

the compiler front-end at the level of the Abstract Syntax Tree

(AST) — before any transformation or code generation is done.

From this point on, the compiler will compile two different

bodies of code: (1) the main program code, which is exactly

the same code that was used for generating the binary of the

recorded program, and (2) the debug code.

The extracted debug code is transformed before being com-

piled. This is because it references variables, memory locations

and functions of the program that are not available to it after

the extraction step. For example, in Figure 2(b), the reference

to variable a will not be resolvable after the debug code is

extracted. Hence, the compiler transforms each group of debug

instructions into a debug function that receives, as its formal ar-

guments, those variables of the program code that are accessed

by the debug code (Figure 2(c)).

In addition, the compiler front-end needs to leave some

markers in the main program code to convey to the back-end

the location in the program where the debug code should be

executed, as well as the variables it will access. The back-end

will use these markers to generate extra files with information

about the debug functions and their arguments. This informa-

tion will be used to invoke the extracted debug code.

3.2. Access Program Code & Data from the Debug Code

The debug code needs to be able to read arbitrary variables

and memory locations of the main program. It also needs

to be able to invoke subroutines in the program — e.g., to

evaluate the value of an expression or to traverse program data

structures that might in turn call other subroutines. To provide

this capability, the debug code should run in the same virtual

address space as the main program.

Challenge. Allowing the debug code to use the address space

of the program to contain its code and state results in some

memory ranges not being available to the main program. If the

main program tries to access a location in these ranges, it can

result in replay divergence.

Solution. rdb places the debug code and state in those parts

of the program address space that are not going to be used by

the main program. This is feasible, since the RnR log con-

tains enough information to allow rdb to identify the memory

ranges not used by the main program.

3.3. Output the Results of the Debug Code

Inspecting the program’s state is not very useful if the inspec-

tion results cannot be conveyed back to the developer. For

example, in C programs, programmers often use printf.

Challenge. Since the debug code is running in the same

address space as the program, it could call the program’s

printf. However, the call will change the contents of data

structures internal to the runtime library (libc in this case)

— which are part of the main program state. This change will

cause a replay divergence.

Solution. rdb provides the debug code with its own instance

of the runtime libraries (e.g., libc and libstdc++ for

C/C++ programs). In the code generation phase, the compiler

treats calls to such subroutines by the debug code differently

than calls to the subroutines of the main program. For example,

consider Figure 2(d). The debug code contains two function

calls, namely printf() and g(). The compiler identifies

printf() as a member of the runtime library and not as

an input to the debug code. Later, when the debug code is

linked with its own libc, this function will be resolved to the

printf in that instance of libc.

On the other hand, function g() comes from the main pro-

gram. Like any other piece of main program accessed by the

debug code, it will be passed to the debug code as an input.

Specifically, when the debug function gets called, the loca-

tion of g() will be passed as an argument to the function.

Hence, the debug code calls the program’s instance of g().

Figure 2(e) shows the resulting main program and extracted

debug code.

3.4. Keep State in the Debug Code

When programmers debug code with complex data structures,

they often need to keep some shadow state for debugging

purposes. This is usually done by allocating some heap objects

that outlive the piece of debug code creating them. They are

accessed in the future by some other part of the debug code.

In addition, these objects may need to include references to

objects belonging to the main program.

Challenge. Debug code cannot allocate its dynamic objects

in the same heap as the main program. This would change the

program’s state and potentially result in replay divergence.

Solution. rdb provides the debug code with its own instance

of the runtime library. Hence, the debug code will automat-

ically use the heap that belongs to this runtime library as it

invokes memory allocation routines (e.g., malloc()). Recall

from Section 3.2 that rdb ensures that the addresses used by

the main and debug codes do not interfere. However, since

debug code lives in the same virtual address space as the main

code, debug objects can easily contain references to objects

belonging to the main program.

4. Base Design of Replay Debugging with rdb

We argue that, to guarantee replay debugging with exact replay,

we need two capabilities. One is the ability to generate, out of

the code instrumented with debug statements, an executable

that is identical to that of the original application. The second

is the ability to replay the program encoded in the log while

invoking the debug code at the appropriate locations in the

code. In this section, we describe how rdb attains these two

abilities. Before this, we discuss the structure of the debug

code. In our discussion, we assume that rdb operates on

C/C++ programs.

4.1. Structure of the Debug Code

To replay-debug a program with rdb, a developer writes snip-

pets of debug code inlined in the program code. The inlined

debug code should be a single-entry, single-exit region [3] in

the control flow graph of the program. This is needed to ensure

that the compiler can easily extract the debug code from the

program. We call every such piece of debug code a Debug

Region. Each debug region is enclosed between rdb_begin

and rdb_end markers to help the compiler identify it.

The code in a debug region can freely access any object

(variable, function or constant) that is accessible by the main

program code as long as it does not write, directly or indirectly,

to the memory owned by the main program. A debug region

can also have locally-declared variables that are only visible

in that debug region, and freely use functions provided by

its private instance of runtime libraries. Figure 3 shows an

example of a debug region with a for loop, a locally-declared

variable, and a printf statement.

if (...) {

N = ... /* program code */

x = ... /* program code */

rdb_begin

int i;

for (i = 0; i < N; i++) {

printf("x[%d]=%d", i, x[i]);

}

rdb_end

}

else { ... /* program code */ }

Figure 3: Example of a debug region.

In addition, the developer can also write new functions to

call from the debug region, and declare and use new global

variables that do not exist in the original code. These function

and global variable declarations are not in a debug region. We

explain how rdb supports them in Section 5.1.

4.2. Generating the Executable for Replay Debugging

After the developer has augmented the program source with

debug regions, the first step is to generate an executable of

void main() {

char c;

c = getchar();

rdb_begin

printf("c is '%c'\n", c);

rdb_end

}

(a)

@.str = ³F�is '%c'\n´

void @main() {

%c = alloca i8

%_tmp0 = call @getchar()

store %_tmp0, %c

call @__rdb_begin()

%_tmp1 = load %c

call @printf(@.str, %_tmp1)

call @__rdb_end()

}

(b)

@.str �³F�LV�
�F
\Q´

void @__rdb_func_1(i8* %arg) {

%_tmp1 = load %arg

call @printf(@.str, %_tmp1)

}

(c)

(e)

Function Descriptors:

FuncID FuncName

1 __rdb_func_1

2 «

void @main() {

%c = alloca i8

%_tmp0 = call @getchar()

store %_tmp0, %c

call @llvm.rdb.location(1)

call @llvm.rdb.arg(1, 0, %c)

}

(d)

Argument Descriptors:

FuncID Position Class Info

1 0 Stack (SP, -20)

2 0 « «

2 1 « «

(f)

Figure 4: Compiling an example program for replay debugging: C program containing debug code (a); resulting LLVM IR gener-
ated by the Clang front-end (b); extracted debug module (c); resulting main code containing rdb markers (d); function
descriptors (e); and argument descriptors (f).

the application that, while identical to the original application

in both code and data, can also invoke the debug code. The

idea in rdb is to force the compilation process to generate two

binary files from the program source files. One is identical to

the binary of the original program with no debug code; the

other encapsulates all the extracted debug code.

To this end, the compiler takes each source file and generates

two object files, one with the main program code, and the other

with the extracted debug code. After all the files have been

processed, the two sets of object files are linked separately to

generate two different binaries.

In the following, we describe the operation in detail. We

describe it in the context of the Clang/LLVM compilation

flow [23], which is outlined in Figure 5. This tool set takes

C/C++ source files and, in the front-end (leftmost box), trans-

lates them to unoptimized LLVM Intermediate Representation

(IR). The output is then taken by the LLVM optimizer (central

box), which generates optimized LLVM IR. For simplicity, the

current implementation of rdb operates under the assumption

that the code is compiled without optimization (i.e., with the

-O0 command line option). Section 7.2 discusses the exten-

sions needed to handle optimized code. Finally, the output of

the central box is taken by LLVM CodeGen backend (right-

most box), which translates it into x86 machine code. rdb

augments the last two boxes.

Figure 5: Clang/LLVM compilation flow. rdb augments the
two shaded boxes.

To aid the presentation, we use the simple C program in

Figure 4(a) as a running example. The original program reads

a character from the standard input. The debug code then

prints it to the standard output. Figure 6(a) shows the rdb

compilation flow, which we will describe in steps.

We use the Clang front-end to translate the program source

to its equivalent LLVM IR. After translation, the code in a valid

debug region retains its shape as a single-entry, single-exit re-

gion enclosed between begin and end markers. Figure 4(b)

shows the resulting LLVM IR. Following the LLVM conven-

tion, names that start with % are virtual registers, while those

that start with @ are global objects. For simplicity, we show

an abridged version of the LLVM code that, although not com-

plete, captures the essence of the generated IR. rdb_begin

and rdb_end are replaced by calls to two dummy functions

that will be removed later. We are now ready to perform the

two compilation steps for rdb: code extraction and machine

code generation.

4.2.1. Step 1: Code Extraction. This step is performed inside

the LLVM IR optimizer. It is shown in Step 1 of Figure 6(a).

This step, called Extractor, extracts the debug code from the

input LLVM IR code, and generates two modules. One is the

extracted debug code; the other is the resulting main code. The

Extractor runs before any further processing of the input LLVM

IR code, so that the next compilation steps are guaranteed to

operate on the same LLVM IR as in the original code.

For each debug region, the Extractor generates one debug

function, which contains the LLVM code of that region. Any

variable or function that belongs to the main code and is ac-

cessed in the debug region becomes an argument to the debug

function. We call such variables Debug Arguments. The Extrac-

tor replaces all the references to a debug argument in the body

of the debug function with references to the corresponding

argument.

Figure 4(c) shows the debug module extracted from the ex-

ample program. It contains one debug function. The debug

region accesses three objects that are not defined in the region:

variable c, function printf(), and constant string .str.

Variable c is an input to the function. The printf() func-

tion comes from the debug code’s libc. Finally, .str is a

constant that would not have existed if it was not used in the

debug function. Hence, it should only be part of the debug

code. Thus, the single argument of the function is the address

of c from the main code when the function is invoked.

The resulting main code is the same as the original program

code, except for some markers that are added by the Extrac-

tor to establish the necessary relation between the main code

Figure 6: rdb compilation flow (a), and the different components of the Rdbtool binary (b).

and the debug code. There are two type of markers: (1) Lo-

cation markers, which mark the points in the control flow of

the main code where the debug functions should be invoked,

and (2) Argument markers, which mark the variables that are

referenced in the debug region and thus have to be passed as

arguments to the corresponding debug function. These markers

are represented as LLVM intrinsics, which are calls to built-

in functions of the compiler (llvm.rdb.location() and

llvm.rdb.arg(), respectively). They will be processed in

Step 2. Figure 4(d) shows the resulting main code, where the

whole debug region has been replaced by intrinsic calls.

The arguments of the markers are used to identify the correct

debug code. Specifically, each debug region is assigned a

unique integer ID by the Extractor. This ID is passed as the

first argument to the corresponding location and argument

markers in the main code. In Figure 4(d), this is ID 1. To

relate these IDs to the debug function names, the Extractor

generates a Function Descriptor file that associates an ID to

each generated debug function name (Figure 4(e)). Using

this information, the replay execution will identify the debug

function that has to be invoked at a given marked location.

In addition, the argument marker (llvm.rdb.arg()) for a

variable takes two additional arguments: the position of the

variable in the argument list of the debug function, and the

variable. In Figure 4(d), the position is 0 because variable c is

the only argument of the debug function.

4.2.2. Step 2: Machine Code Generation. The second rdb-

specific compilation step is performed in the CodeGen pass. It

is shown in Step 2 of Figure 6(a). This step takes the extracted

debug and main modules and translates them to machine code.

The debug module does not need any special treatment from

CodeGen, since it is normal LLVM code. The main module,

however, contains the markers that need to be handled. In

this step, we need to ensure that the markers do not change

the code generation process relative to the original code. It

is at this step that the location of the debug arguments in the

main code is determined. Generating a location that is different

from a variable’s location in the original code will result in an

inconsistent execution during replay.

CodeGen removes the argument markers early on — be-

fore any code generation activity such as instruction selection

or register allocation takes place. In this manner, rdb can

guarantee that the machine code generated is the same as for

the original code. During the code generation, however, these

debug variables are tracked, such that we can know what lo-

cation has been assigned to each of them. After the machine

code is finalized, CodeGen outputs an Argument Descriptor

file, which has a descriptor for each debug argument. The

descriptor for an argument includes the ID of the function to

which the argument belongs, the position of the variable in the

argument list of that function, and some information about the

class of the variable. The latter allows the replay execution

to find the location of the variable in the main program when

invoking the debug function.

There are three classes of variables that CodeGen tracks:

(1) register-allocated variables, (2) stack-allocated variables,

and (3) global variables or functions. For register-allocated

variables, the descriptor contains the register name. Stack-

allocated variables are described by a (register, offset) pair;

register is usually one of the stack pointer or frame pointer

registers, and offset is an immediate value to add to register.

Global variables and functions are described as a (symbol, off-

set) pair. The desired location is calculated by adding offset to

the location of symbol in the address space; the latter is found

by looking up symbol in the symbol table of the program.

Figure 4(f) shows the argument descriptor file for the ex-

ample. The first row corresponds to variable c. It belongs to

function __rdb_func_1 (ID is 1), it is the function’s first

argument (Position is 0), and it is found in the stack at offset

-20 from the stack pointer (Info is (SP,-20)).

Finally, location markers, which indicate main-code loca-

tions at which debug functions should be invoked, are trans-

lated to labels in the code. These labels do not affect the code

generation process in any way. At the end, they become sym-

bols in the symbol table of the generated machine code. The

name of the symbol contains the ID of the corresponding de-

bug function as a suffix. This way, the replay execution knows

which debug function to call when the execution flow reaches

that location.

4.3. Executing the Debug Code while Replaying

After rdb has generated the main and debug binary modules

described above, the second mechanism needed for replay

debugging is the ability to replay the execution encoded in the

logs while invoking the debug code at the appropriate locations

in the code. For this, we need an infrastructure with three

functionalities.

First, we need to set up a virtual address space that is shared

by the main program and the debug code. However, each of

the two needs to have its own instance of the runtime libraries,

and use different memory ranges for their code and data (stack,

static data, and heap).

Second, the infrastructure needs to replay the application

using the recorded input and memory access interleaving logs,

injecting inputs and enforcing access interleavings as recorded.

Finally, it should provide the ability to invoke the appro-

priate debug function with appropriate arguments, without

affecting the deterministic replay, when the execution flow of

the application reaches a marked location. The required steps

involve pausing the replay, setting up a stack frame for the de-

bug function without affecting the main program, transferring

the control to the debug code (i.e., invoking the function), and

returning the control back to the main code when the debug

function completes.

Figure 7(a) shows a high-level view of the infrastructure.

It contains a replay tool that reads a log, controls application

execution, and invokes the debug functions. In this paper, we

build the infrastructure using Pin [29]. Specifically, we aug-

ment the Pin-based replay mechanism used in QuickRec [36].

The reason is that, as we discuss next, Pin already provides

some of the features needed. In Section 5.6, we discuss an

alternative replay infrastructure.

Figure 7: High-level view of the infrastructure for executing the
debug code while replaying (a), and address space of
an application running under Pin (b).

4.3.1. Replay Debugging Using Pin: Rdbtool. Pin provides

much of the required functionality described. The address

space of an application that runs under Pin consists of three

parts (Figure 7(b)): (1) the application, (2) the Pin infrastruc-

ture, and (3) a Pintool, which is a shared library. The Pintool

can use Pin’s API to monitor and control the execution of

the application. Internally, Pin uses binary instrumentation

to implement this. When Pin is invoked, it loads the Pintool

and provides it with a copy of the runtime libraries libc and

stdlibc++. Then, it lets the Pintool analyze the instruc-

tions in the application’s code and instrument them. In Quick-

Rec [36], this Pintool provides replay functionality. In rdb,

we further extend it to provide replay debugging functionality,

and call it Rdbtool.

To replay, we need the application binary, the Rdbtool binary,

the libraries of both binaries, and the RnR input and memory

logs. The memory log is only required for RnR of multi-

threaded workloads, and is in the form of a set of totally-

ordered chunks. Prior to starting Pin, we analyze the input log

to identify all the memory ranges that are going to be used by

the application. This can be done by examining the input log

entries for mmap() and brk() system calls. We then make

sure that Pin and the Rdbtool do not use these ranges, to ensure

correct replay.

The Rdbtool keeps the debug code and data, and will en-

sure that the debug code executes when needed. As shown in

Figure 6(b), the Rdbtool binary is built by compiling together:

(1) the code of the core Rdbtool logic (i.e., baseline replay

functionality as in QuickRec [36], plus the invocation of de-

bug functions when execution reaches debug markers), (2) the

object files with the extracted debug functions, (3) files with

other, non-inlined debug code (explained in Section 5.1), and

(4) the function and argument descriptor files generated by the

modified compiler.

The Rdbtool controls the RnR input and memory logs during

replay. To inject application inputs, the Rdbtool instruments

system calls, so that it can emulate their results according to

the RnR input log. Most system calls are emulated by injecting

their results into the application. Some system calls, however,

need to be re-executed to create the appropriate kernel-level

state for the application — e.g., memory mapping and thread

creation system calls. As for the RnR memory access inter-

leaving log, as chunks replay, a counter counts the instructions

executed. When the counter reaches the logged chunk size, the

thread’s execution is paused and it looks for the next chunk in

the log to execute.

Most importantly, the Rdbtool manages the replay debug-

ging. When the Rdbtool is loaded by Pin, it first searches the

symbol table of the main program for symbols that mark code

locations at which debug functions should be called. When

it instruments the application’s binary, it instruments these

code locations to set breakpoints. When execution hits one

of these breakpoints, the Rdbtool pauses the replay, and uses

the information in the descriptor files to find the address and

arguments of the corresponding debug function to call. Then,

it calls the function. Note that this function call takes place

on the Rdbtool’s stack, rather than on the application’s stack,

to avoid changing the application’s memory. Once the debug

function completes, the Rdbtool transfers execution to the main

program.

5. Advanced Issues

We now describe several advanced issues in the rdb design.

The last two are discussed here for completeness but have not

been implemented in the current system.

5.1. Debug-Only Functions and Global Variables

In the process of debugging, developers often need to define

global objects (variables or functions) for use in the debug

code. The definitions of such objects can only be included in

the debug binary; including them in the main binary would

result in a program that is different from the original program.

To ensure this, rdb requires that the developer writes the

definitions of such global objects in source files that are linked

with the extracted debug code, to form the Rdbtool binary.

Such files are shown as the box labeled Non-inlined Debug

Code in Figure 6(b).

When a global object is accessed in a debug region, the

Extractor pass needs to know whether it belongs to the main

code or it is a debug-only object. A reference to a debug-only

global object is not changed, and is resolved at link time when

the support file containing the definition of the object is linked-

in. A reference to a global object belonging to the main code

is turned into a debug function argument.

In our current implementation, the Extractor makes the

decision based on the name of the object. All debug-only

global object names are required to have a particular prefix. A

more elegant solution would involve using C/C++ attributes

for this purpose — e.g., each debug-only global object could

be marked with a C/C++ attribute named rdb to make it easy

to identify.

5.2. Event-Driven Debugging

Developers often like to invoke debug code when a certain

event happens in the main application — rather than when

execution reaches a marked location. This is called event-

driven debugging, and is supported in rdb with a certain API.

Developers can use this API to associate call-back functions

with events, rather than marking the application code. The

Rdbtool then adds instrumentation to the application code to

detect the occurrence of the events. When an event happens,

the associated call-back function is invoked.

There are several events that the developer can ask rdb to

monitor. One is the occurrence of a system call. The associated

call-back is invoked before or after a system call executes.

For example, in some programs, buffer overflow or under-

synchronized buffer accesses can result in gibberish program

output. By asking rdb to monitor write() system calls, one

can identify the code responsible for the bug.

Another event is the call of a function. The associated call-

back is invoked when an arbitrary function is called. This is

especially useful to monitor library calls in a program.

Finally, another event is reading or writing a certain mem-

ory location. This corresponds to the popular “watchpoint”

functionality. In this case, the associated call-back function

is invoked before or after the program execution accesses the

location. This functionality is useful to diagnose bugs such as

segmentation faults or buffer overflows. Currently, this func-

tionality is implemented in rdb by monitoring each memory

access, and comparing the accessed address to the watched

address, and invoking the call-back function if they match.

A future implementation will involve using the watchpoint

registers provided by the x86 processor hardware.

5.3. Protecting Against Writes to Main-Program Memory

The debug code should not write directly or indirectly to mem-

ory regions of the main program. To enforce this, the Rdbtool

can optionally change the access protection of main-program

memory regions to read-only prior to invoking a debug func-

tion. It then restores the original protections after executing

the debug code. This comes at a performance cost, but detects

debug code that violates the read-only-access requirement.

5.4. Using gdb with Replay Debugging

Pin can be connected to gdb, giving gdb full control over the

execution of the application running under Pin. This way, gdb

can be used to debug the application as if the debugger was

directly attached to the application. This feature is indepen-

dent of rdb, so it is possible to use gdb even during replay.

However, only a subset of gdb features are safe to use in this

fashion — namely, those that do not modify the application’s

memory content (code or data), such as reading the applica-

tion’s memory or setting breakpoints.

More complex debugging logic has to be implemented as

rdb debug code, to avoid affecting the application state. Ex-

amples of such debug logic include adding local, global and

dynamic objects in the debug code, adding and executing

new code, including if statements, while loops, and function

calls/definitions, or creating shadow data structures. The sup-

port of such complex debug code is one of the main features

that distinguishes rdb from merely using gdb in conjunction

with a replay tool (e.g., gdb plus QuickRec).

Still, in an rdb-based debugging scenario, using gdb can be

particularly useful for debugging tasks that are not easy to do

using inlined debug code, such as back-tracing an application’s

stack or single-stepping through the execution.

5.5. Replay Debugging with Partial Logs

In long-running recordings, the recorded log size can grow

very large. To reduce storage requirements, periodic snapshots

of the application state could be taken. In this case, when

a snapshot is taken, the recorded log up to that point would

be purged. Thus, in this environment, the execution would

be recorded as an application snapshot plus a partial log that

records the rest of the execution.

For rdb to perform replay debugging in such an environ-

ment, it would first have to initialize the state of the application

using the snapshot; then it could replay the events in the partial

log. Since the program being replayed is exactly the same (in

terms of both code and data content) as the recorded program,

rdb would work correctly after restoring the snapshot.

5.6. Replay Debugging without Pin

Section 4.3.1 described how rdb uses Pin to support the sec-

ond mechanism needed for replay debugging: executing the

debug code while replaying the main program. In reality, rdb

can be built on top of other replay infrastructures. One of them

is replay using OS functionality, as exemplified by Cyrus [17]

and SCRIBE [22].

In this case, the role of the Replay Tool in Figure 7(a) is

played by a modified OS kernel. The OS creates a process,

loads into memory the code of the application to be replayed

and the libraries it uses, and then starts replaying the applica-

tion. The OS injects the recorded inputs from the input log

(e.g., when the program makes system calls), and enforces

the memory access interleavings from the memory log, using

mechanisms explained in Cyrus [17]) and SCRIBE [22].

To support replay debugging in this environment, the OS

also needs to load the binary for the debug code, and link

it with a separate instance of the run-time library. The OS

can easily make sure that the application and the debug-code

binaries use distinct address ranges. To mark debug locations,

the OS can use either hardware or software breakpoints. When

a breakpoint is hit, control transfers to the OS. The OS can

then calculate the address and arguments of the corresponding

debug function using the information in the descriptor files.

Then, it sets up a dummy stack in an unused part of the address

space, sets the program’s PC to point to the first instruction of

the debug function, and transfers control back to user mode. In

this way, when the program resumes execution, it will execute

the debug function. After the function terminates, the OS

transfers control back to the main program.

This technique to invoke user-mode code by the kernel is

the same mechanism used in Linux, for example, to invoke

signal handlers. These handlers are functions defined in user-

mode code that are executed when the kernel receives signals

destined for the process.

6. An Example of Replay Debugging

To illustrate replay debugging with rdb, we examine a bug

in the GNU bc program version 1.06 [14] that crashes the

program due to a segmentation fault [15]. This bug is also

included in the BugBench bug-benchmark suite [28]. While

this bug is not timing-dependent or multithreaded, we examine

it because it illustrates many of rdb’s capabilities.

bc is a popular numeric processing program that takes as

input a program with C-like syntax and executes it. bc works

by first translating its input program to an internal byte-code

format (translation phase) and then executing the byte-code

(execution phase). In this section, “instruction” refers to a

byte-code instruction. Instructions read their operands from an

“operand stack” and push the result back on the stack.

We assume that a user was running the bc program on a

machine equipped with RnR hardware when the crash hap-

pened, and that he/she gave us the resulting RnR log. We now

consider the replay debugging process in steps.

Step 1: Replay to Find Out the Crash Point. The first

step is to find out where the crash happens in the program

code. For this, we attach gdb to the replayer (Section 5.4)

and replay the execution. When the program crashes, we

use gdb to analyze its stack frames at the crash point. We

conclude that the crash happens while executing the byte-code

(the execution phase). Specifically, it happens in the BRANCH

case of a switch statement inside a while loop that processes

each instruction inst that gets executed (Figure 8(a)).

Local variable(s) defined in debug code:

depth, temp

Function(s) defined in debug code:

__rdb_out_char

Function(s) defined in run-time library:

printf

Variable(s) defined in main code:

ex_stack, inst

Function(s) defined in the main code:

bc_out_num

(a)

(b)

D
eb

u
g
 R

eg
io

n

Crash Site

ZKLOH���«��
�PRUH�LQVWUXFWLRQV� to go? */) {

«
rdb_begin

{

int depth = 0;

estack_rec *temp = ex_stack;

/* print the instruction */

printf("inst=%c\n", inst);

/* print the operand stack */

if (temp != NULL) {
depth = 1;

while (temp != NULL) {

printf(" %d = %p ", depth, temp);

bc_out_num(temp->s_num, __rdb_out_char);

depth++;

temp = temp->s_next;

}}

}
rdb_end

«

switch (inst) {

case ADD:

«

case BRANCH:

«

}
}

Figure 8: Example using rdb for replay debugging: program
with a debug region (a) and objects accessed in the
debug region (b).

Step 2: Replay Again to Print State at the Crash Point.

The next step is to find out why the crash happens. For this,

we write a debug region before the crash point that prints

inst and the contents of the operand stack when inst executes.

Figure 8(a) shows the debug code inside the rdb_begin

and rdb_end markers. Figure 8(b) shows the objects ac-

cessed in the debug code. They include local variables de-

fined in the debug code (depth and temp), functions de-

fined in the debug code (__rdb_out_char, but the defi-

nition is not shown), functions from the run-time library of

the debug code (printf), variables defined in the main code

(ex_stack and inst), and functions from the main code

(bc_out_num).

The main program includes the bc_out_num function that

is used to write numbers to the output. Internally, it first com-

putes the characters that need to be put out and then, instead

of directly writing them to the output, it passes each character

to a pretty-printing function which is passed to bc_out_num

as an argument. This second function does the actual out-

put. In the debug code, when we call bc_out_num, we

cannot pass to it any of the pretty-printing functions defined

in the main program, since they eventually call functions from

the libc of the main code. This would result in replay fail-

ure. Instead, we define an equivalent function in the debug

code, called __rdb_out_char, and pass it as an argument

to bc_out_num.

Step 3: Identify that the Problem Is Somewhere Else.

Based on the data printed by the debug code, we find that the

program crashes because a BRANCH finds an empty operand

stack while it expects to find the branch condition on the stack.

Now we know that the actual problem is in the translation

phase — the instructions preceding the BRANCH do not pro-

duce correct operand stack state. Consequently, we need to

examine the input program of bc and find the portion of it that

generates the instructions before the branch.

Step 4: Replay Again to Print State at the New Point. To

obtain the input code that generates the instructions before the

branch, we add a new debug region in the translation code.

The region prints the input program from bc’s internal data

structures before it is translated.1 After this, we replay the

program again and print the code.

Step 5: Diagnose the Bug. We compare the output of Step

2 (instructions and stack content) to the output of Step 4 (input

program) to find the bug. The input program contains a for

loop whose condition is empty. This is equivalent to a true

condition, which means that the body of the loop should be

executed. Unfortunately, for this pattern, the buggy translator

fails to include an instruction that pushes the constant true

on the stack, and the subsequent branch instruction crashes.

This example has shown several rdb features, such as: (1)

the combined use of gdb and rdb, (2) three deterministic

replays of the program with expanding debug instrumentation,

and (3) debug regions that use many different types of objects.

The replays would be deterministic even for timing-dependent,

multithreaded bugs.

7. Current Limitations and Potential Solutions

We now discuss the main limitations of the current rdb design.

7.1. Adding/Removing Code in the Main Program

Since rdb targets replay debugging with guaranteed exact

replay, it cannot tolerate changes to the main program that

are not extracted into the debug code binary. In a debugging

1Alternatively, we could ask the user who gave us the log to also provide

the input program. However, we can easily regenerate it ourselves.

process, after rdb has helped diagnose the bug, the code will

be patched to fix the defect. Patching involves adding and/or

removing code in the program. After the code is patched, rdb

cannot be used for replay debugging the resulting program

using the original log. This is a fundamental limitation of

replay debugging with guaranteed exact replay.

7.2. Supporting Compiler Optimizations

A limitation of the current implementation of rdb is the as-

sumption that compiler optimizations have been disabled. Dis-

abling optimizations results in that the generated LLVM IR

and machine code are in direct correspondence with the high-

level program. This makes the debug code extraction and code

generation processes of Section 4 easier to implement.

The difficulty with compiler optimizations is that, because

they are applied after the debug code has been extracted from

the program, the compiler performs them without being aware

of the debug code. Hence, the compiler may optimize away

some of the state that the debug code will attempt to access.

In general, the compiler may perform optimizations that are

invalid in the presence of the debug code.

Figure 9(a) shows an example. In this program, character

c is read from the input and variable a is set (gray box in

the figure). However, a is not used in the main code — it

is only used in the debug code. After we extract the debug

region, a Dead Code Elimination (DCE) pass will remove the

statement in the gray box from the main code as dead code.

The DCE optimization has to be performed because it was

also performed in the original program recorded in the log.

However, this optimization causes the debug code executed

during replay debugging to fail.

void f() {

char c = getchar();

int a = c ? 5 : 6;

printf�³F�LV��G\Q´��F��

rdb_begin

printf�³D�LV��G\Q´��D��

rdb_end

}

void f() {

char c = getchar();

rdb_begin

int a = c ? 5 : 6;

rdb_end

printf�³F�LV��G\Q´��F��

rdb_begin

printf�³D�LV��G\Q´��D��

rdb_end

}

(a) (b)

Figure 9: Optimization example: program before (a) and after
(b) automatic debug code insertion.

To assess the applicability of rdb to optimized code, we

analyzed the optimizations that LLVM performs in its -O2

and -O3 optimization levels. Based on our observations, we

propose a strategy for a future improved version of rdb that

handles optimized code.

First, we find that some optimizations (e.g., Common Subex-

pression Elimination (CSE), loop unrolling and inlining) do not

affect the validity of the debug code. The reason is that these

optimizations do not optimize away the main program state

accessed by the debug code. Hence, the compiler can safely

repeat such optimizations in the presence of rdb markers.

However, there are other optimizations where the compiler

has to optimize based on the knowledge of both the main and

debug codes. In some cases, the compiler can automatically

generate extra debug code after performing an optimization

on the main code. This extra debug code undoes some of the

effects of the optimization for the debug code. As an example,

consider the code in Figure 9(b). After having removed the

statement in the gray box in Figure 9(a) from the main program,

the compiler adds a new debug region (gray box in Figure 9(b))

that calculates a in the debug code for later use. With this

change, the compiler can optimize the main code exactly the

way it optimized the original code, while keeping the debug

code valid. Note that, for simplicity, this example presents the

changes in C code. In practice, the extra code will be inserted

at the level of the LLVM IR or machine code.

Sometimes, it may be hard or even impossible to undo op-

timization effects in the above fashion — in particular, when

complex pointer-aliasing relations exist between the debug

code and the main code. In these cases, the compiler can gen-

erate an error message to let the programmer know about the

problem. Then, the programmer can change the debug code

accordingly. Overall, we believe it is possible to extend rdb to

work with optimized code while supporting replay debugging

with guaranteed exact replay.

7.3. Cross-Region Data Sharing

In the current implementation of rdb, it is not possible to

define a debug-only local variable in one debug region and

use it in another debug region in the same function. This is

because we convert each debug region into a separate function.

Thus, all of the cross-region data sharing has to happen through

debug-only global variables (Section 5.1).

This inconvenience can be easily relieved by adding com-

piler support for automatically converting such local variables

to global variables. Using stack-like data structures, it is also

possible to support situations (such as recursive function calls)

in which multiple instances of the same static debug-only local

variable are simultaneously alive. We leave the details of the

design to future work.

8. Related Work

In general, debugging involves bug reproduction, diagnosis

and fixing. While there are many proposals for using RnR to

reproduce bugs (e.g., [4, 9, 10, 13, 16, 21, 24, 33, 35, 40, 41]),

very few have tackled the issues of bug diagnosis and fixing.

Some RnR proposals [9, 20, 35, 44] allow limited execu-

tion inspection capabilities. Aftersight [9], IntroVirt [20] and

Simics Hindsight [44] allow programmers to write code that

inspects the state of the program under replay. They all record

and replay virtual machines rather than individual applications.

As a result, the kind of inspection code they support is differ-

ent in nature than debug code that can be inlined with main

code. In addition, Aftersight and Hindsight keep the debug

state in a separate address space than the program being de-

bugged, and IntroVirt does not allow debug code to keep state.

Hence, neither provides all of the usability features mentioned

in Section 3. PinPlay [35] uses Pin [29] for both record and

replay. Similar to rdb, it uses Pin’s gdb-connection feature

(Section 5.4) to let the debugger control and inspect the appli-

cation’s execution. However, to avoid replay divergence, it can

only use the limited set of features explained in Section 5.4.

DORA [43] specifically targets bug diagnosis and patch test-

ing using RnR. Its underlying RnR system, SCRIBE [22], uses

a modified Linux kernel to record program inputs as well as

inter-thread data dependences. Given the logs recorded by

SCRIBE, DORA then uses a search-based algorithm to allow

“mutable replay” of modified programs, as explained in Sec-

tion 2.2. DORA does not guarantee deterministic replay, and

hence, cannot ensure exact debug-time reproduction of non-

deterministic events that resulted in a bug. This is a major

limitation and affects its usability as a replay debugging tool.

In addition, to reduce the recording overhead, SCRIBE’s

approach to recording memory-access interleavings systemati-

cally perturbs a program’s shared-memory accesses. Moreover,

DORA’s replay of memory interleavings in multithreaded pro-

grams relies on SCRIBE’s particular style of recording them.

This design choice negatively affects DORA’s usefulness for

capturing, reproducing and debugging concurrency-related

bugs such as data races and atomicity violations.

There is a vast body of research on hardware-assisted

MRR [5, 7, 17, 18, 19, 30, 31, 32, 33, 36, 37, 38, 39, 45,

46, 47]. Recent proposals record the execution of a thread as

a sequence of chunks of instructions, and inter-thread depen-

dences as orders between chunks of different threads. While

most proposals only consider the problem of capturing memory

races, a few also include designs that integrate software sup-

port for recording program inputs, to enable application-level

RnR [17, 31, 36]. BugNet [33] takes a different MRR approach

and records processes by storing the result of load instructions

in a hardware-based dictionary. This is enough to handle

both input and memory-interleaving non-determinism. Lee et

al. [25, 26] augment this technique by using offline symbolic

analysis to reconstruct the inter-thread dependences. Overall,

none of these hardware-assisted RnR proposals consider the

problem of using their RnR system for replay debugging.

Software-only RnR solutions rely on modified runtime li-

braries, compilers, operating systems and virtual-machine mon-

itors to capture sources of non-determinism [4, 6, 8, 9, 11, 12,

21, 22, 24, 27, 34, 35, 40, 41, 42]. Some record and replay

execution of individual applications [4, 8, 22, 24, 27, 34, 35,

40, 41, 42], while others operate at the level of virtual ma-

chines [6, 9, 11, 12, 21]. All RnR solutions that provide de-

bugging capability beyond bug reproduction (discussed at the

beginning of this section) use software-only RnR.

9. Concluding Remarks

While hardware-assisted RnR has been proposed as a primitive

for debugging hard-to-repeat software bugs, simply providing

support for repeatedly stumbling on the same bug does not

help diagnose it. For bug diagnosis, developers need to modify

the code — e.g., by creating and operating on new variables

or printing state. Unfortunately, this renders the RnR log

inconsistent.

This paper introduced rdb, the first scheme for replay de-

bugging that guarantees exact replay. With rdb, the user

interface is the same as in an ordinary bug diagnosis session:

the user can read program variables, invoke program functions,

create new variables and functions, set watchpoints, and print

state. rdb uses the log generated by hardware-assisted RnR

to always guarantee deterministic re-execution. rdb’s opera-

tion is possible thanks to two mechanisms. The first one is a

compiler mechanism that splits the instrumented application

into two binaries: one that is identical to the original pro-

gram binary, and another that encapsulates all the added debug

code. The second mechanism is a runtime one that replays

the application and, without affecting it in any way, invokes

the appropriate debug code at the appropriate locations. This

paper described an implementation of rdb using LLVM and

Pin, and discussed an example of how rdb’s replay debugging

is used to diagnose a real bug.

References

[1] “GDB: The GNU Project Debugger,” http://www.gnu.org/software/
gdb/.

[2] “The LLVM Compiler Infrastructure,” http://llvm.org/.

[3] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Princi-
ples, Techniques, & Tools, 2nd ed. Addison-Wesley, 2007.

[4] G. Altekar and I. Stoica, “ODR: Output-Deterministic Replay for Mul-
ticore Debugging,” in SOSP, October 2009.

[5] A. Basu, J. Bobba, and M. D. Hill, “Karma: Scalable Deterministic
Record-Replay,” in ICS, June 2011.

[6] T. Bressoud and F. Schneider, “Hypervisor-Based Fault-Tolerance,”
ACM Transactions on Computer Systems, vol. 14, no. 1, February 1996.

[7] Y. Chen, W. Hu, T. Chen, and R. Wu, “LReplay: A Pending Period
Based Deterministic Replay Scheme,” in ISCA, June 2010.

[8] J.-D. Choi and H. Srinivasan, “Deterministic Replay of Java Multi-
threaded Applications,” in SPDT, August 1998.

[9] J. Chow, T. Garfinkel, and P. M. Chen, “Decoupling Dynamic Program
Analysis from Execution in Virtual Environments,” in USENIX ATC,
June 2008.

[10] J. Chow, D. Lucchetti, T. Garfinkel, G. Lefebvre, R. Gardner, J. Mason,
S. Small, and P. M. Chen, “Multi-Stage Replay with Crosscut,” in VEE,
March 2010.

[11] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen,
“ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging
and Replay,” in OSDI, December 2002.

[12] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen,
“Execution Replay of Multiprocessor Virtual Machines,” in VEE, March
2008.

[13] S. I. Feldman and C. B. Brown, “IGOR: A System for Program Debug-
ging via Reversible Execution,” in PADD, May 1988.

[14] Free Software Foundation, “bc - GNU Project,” http://www.gnu.org/
software/bc.

[15] ——, “Bug in GNU bc-1.06,” http://lists.gnu.org/archive/html/
bug-gnu-utils/2001-02/msg00118.html.

[16] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F. Kaashoek, and
Z. Zhang, “R2: An Application-level Kernel for Record and Replay,”
in OSDI, December 2008.

[17] N. Honarmand, N. Dautenhahn, J. Torrellas, S. T. King, G. Pokam, and
C. Pereira, “Cyrus: Unintrusive Application-Level Record-Replay for
Replay Parallelism,” in ASPLOS, March 2013.

[18] N. Honarmand and J. Torrellas, “RelaxReplay: Record and Replay for
Relaxed-Consistency Multiprocessors,” in ASPLOS, March 2014.

[19] D. R. Hower and M. D. Hill, “Rerun: Exploiting Episodes for
Lightweight Memory Race Recording,” in ISCA, June 2008.

[20] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen, “Detecting Past
and Present Intrusions Through Vulnerability-Specific Predicates,” in
SOSP, October 2005.

[21] S. T. King, G. W. Dunlap, and P. M. Chen, “Debugging Operating
Systems with Time-Traveling Virtual Machines,” in USENIX ATC,
April 2005.

[22] O. Laadan, N. Viennot, and J. Nieh, “Transparent, Lightweight Ap-
plication Execution Replay on Commodity Multiprocessor Operating
Systems,” in ACM SIGMETRICS, June 2010.

[23] C. Lattner, “The Architecture of Open Source Applications, chapter
LLVM,” http://www.aosabook.org/en/llvm.html.

[24] T. J. LeBlanc and J. M. Mellor-Crummey, “Debugging Parallel Pro-
grams with Instant Replay,” IEEE Trans. Comp., April 1987.

[25] D. Lee, M. Said, S. Narayanasamy, and Z. Yang, “Offline Symbolic
Analysis to Infer Total Store Order,” in HPCA, February 2011.

[26] D. Lee, M. Said, S. Narayanasamy, Z. Yang, and C. Pereira, “Offline
Symbolic Analysis for Multi-Processor Execution Replay,” in MICRO,
December 2009.

[27] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen,
and J. Flinn, “Respec: Efficient Online Multiprocessor Replay via
Speculation and External Determinism,” in ASPLOS, March 2010.

[28] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou, “Bugbench: Bench-
marks for Evaluating Bug Detection Tools,” in Workshop on the Evalu-
ation of Software Defect Detection Tools, June 2005.

[29] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation,” in PLDI, 2005.

[30] P. Montesinos, L. Ceze, and J. Torrellas, “DeLorean: Recording and
Deterministically Replaying Shared-Memory Multiprocessor Execution
Efficiently,” in ISCA, June 2008.

[31] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas, “Capo: A
Software-Hardware Interface for Practical Deterministic Multiprocessor
Replay,” in ASPLOS, March 2009.

[32] S. Narayanasamy, C. Pereira, and B. Calder, “Recording Shared Mem-
ory Dependencies Using Strata,” in ASPLOS, October 2006.

[33] S. Narayanasamy, G. Pokam, and B. Calder, “BugNet: Continuously
Recording Program Execution for Deterministic Replay Debugging,”
in ISCA, June 2005.

[34] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu,
“PRES: Probabilistic Replay with Execution Sketching on Multiproces-
sors,” in SOSP, October 2009.

[35] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie, “PinPlay:
A Framework for Deterministic Replay and Reproducible Analysis of
Parallel Programs,” in CGO, April 2010.

[36] G. Pokam, K. Danne, C. Pereira, R. Kassa, T. Kranich, S. Hu,
J. Gottschlich, N. Honarmand, N. Dautenhahn, S. T. King, and J. Torrel-
las, “QuickRec: Prototyping an Intel Architecture Extension for Record
and Replay of Multithreaded Programs,” in ISCA, June 2013.

[37] G. Pokam, C. Pereira, K. Danne, R. Kassa, and A.-R. Adl-Tabatabai,
“Architecting a Chunk-Based Memory Race Recorder in Modern CMPs,”
in MICRO, December 2009.

[38] G. Pokam, C. Pereira, S. Hu, A.-R. Adl-Tabatabai, J. Gottschlich,
H. Jungwoo, and Y. Wu, “CoreRacer: A Practical Memory Race
Recorder for Multicore x86 TSO Processors,” in MICRO, December
2011.

[39] X. Qian, H. Huang, B. Sahelices, and D. Qian, “Rainbow: Efficient
Memory Dependence Recording with High Replay Parallelism for
Relaxed Memory Model,” in HPCA, February 2013.

[40] Y. Saito, “Jockey: A User-space Library for Record-replay Debugging,”
in AADEBUG, September 2005.

[41] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou, “Flashback:
A Lightweight Extension for Rollback and Deterministic Replay for
Software Debugging,” in USENIX ATC, June 2004.

[42] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,
and S. Narayanasamy, “DoublePlay: Parallelizing Sequential Logging
and Replay,” in ASPLOS, March 2011.

[43] N. Viennot, S. Nair, and J. Nieh, “Transparent Mutable Replay for
Multicore Debugging and Patch Validation,” in ASPLOS, March 2013.

[44] Virtutech, “Using Simics Hindsight for Software De-
velopment,” http://www.virtutech.com/files/manuals/
using-simics-for-software-development_0.pdf.

[45] G. Voskuilen, F. Ahmad, and T. N. Vijaykumar, “Timetraveler: Exploit-
ing Acyclic Races for Optimizing Memory Race Recording,” in ISCA,
June 2010.

[46] M. Xu, R. Bodik, and M. D. Hill, “A "Flight Data Recorder" for
Enabling Full-System Multiprocessor Deterministic Replay,” in ISCA,
June 2003.

[47] ——, “A Regulated Transitive Reduction (RTR) for Longer Memory
Race Recording,” in ASPLOS, 2006.

